Kayla Orlinsky
Spring 2013

Kayla Orlinsky
Algebra Exam Spring 2013

Problem 1. Let p > 2 be a prime. Describe, up to isomorphism, all groups of order

2.

Solution. Let G be a group of order 2p?. Then by Sylow, n, = 1 mod p and n,|2 so
because p > 2, n, = 1. Thus, G has a normal Sylow p-subgroup.

If G also has a normal Sylow 2-subgroup, then G is abelian and
G= Z2 X Zp2
or
G =7y X Ly X Ly,
depending on whether or not B, the Sylow p-subgroup of G is isomorphic to Z,2 or Z, x Z,.

Now, if P, is a non-normal Sylow 2-subgroup of GG, then by the recognizing of semi-direct
products theorem, G is a semi-direct product of its Sylow 2 and Sylow p-subgroups.

P, = Zy | If P, is cyclic, then we can let ¢ @ Py — Aut(Zy) = Z), = Zy2,, be a
homomorphism.
Let P, = (a) and P, = (b).

Then because Z,2_,, is of even order, there is a nontrivial homomorphism ¢ which will
give a semi-direct product structure to G.

Since Z,2_, is cyclic, its Sylow 2-subgroup is also cyclic and so can only have one element
of order 2. This is because if the Sylow p-subgroup is (z) where x has order 2", then if
i< 2"t 2i < 2" so 2 does not have order 2, and if i > 2"7! then i = 2! 4+ r for
0<r<2mlso (29)? = 2% = 22" = 22" and 2r < 2" so again, 2’ does not have order 2.

Thus, the only element of order 2 is z2"

Thus, we have one possible homorphism ¢(a) = o where o : B, — P, is defined by
o(b) = b~', this defined multipliation on G by bab™' = p(a)(b) = b .

This gives a structure for G as
G2 (a,b|a® =" =1,ab=b""a) = Dy,

the dihedral group of order 2p%.
P,=7Z,x Zy,|. Then if ¢ : P, - Aut(Z, x Z,) = GLy(F,) we have that |GLy(F,)| =

(p* — 1)(p? — p) and since p? — p is even, again there exists a nontrivial homomorphism ¢.

1



Kayla Orlinsky
Spring 2013

Let P, = (b) x (c).
Since ¢ (a) will have order 2 and P, can either act trivially on one or neither of the copies
of Z,, inside F,, we have two possible homomorphisms which generate different semi-direct

products,
p1(a)(b) = b~ and py(a)(e) = ¢, pa(a)(b) = b and @a(a)(c) = .

**Note that the swap function P, — P, where (b, ¢) — (¢, b) is an automorphism, and
s0 ¢3(a)(b) = b and @3(a)(c) = ¢! is conjugate to ¢1(a), namely, ¢, and @3 generate
isomorphic semi-direct products.

This gives two possible structures for G.

G = ({a,bcla®* =t =c” =1,bc =cb,ab=b""a,ac = ca) = Dy, X Z,

G = (a,bcla®* =t = =1,bc =cb,ab=b""a,ac = c 'a) = Zy x,, Zf,

Thus, there are 5 possible structures for G.

Z2 X Zp2

Liy X Loy X Ly

D,

Dgp X Zp

(a,b,cla®> =W = =1,bc = cb,ab =b""a,ac = c 'a) = Zy NWZ;
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Problem 2. Let R be a commutative Noetherian ring with 1. Show that every proper
ideal of R is the product of finitely many (not necessarily distinct) prime ideals of R.
(Hint: Consider the set of ideals that are not products of finitely many prime ideals. Also,
note that if R is not a prime ring then /.J = (0) for some non-zero ideals I and J of R).

Solution. Let S be the set of proper ideals of R which are not products of finitely many
prime ideals.

Assume S is nonempty. Because R is noetherian, S contains a maximal element I.

Since I is not prime, there exists a product of elements ab € I such that a ¢ [ and b ¢ I
(if no such ab existed then I would be prime).

Then (a)(b) € I since sums of products of ab € I but (a) ¢ I and (b) ¢ I.

Now, if I+ (a) = R, then 1 = z+ra where z € I and r € R. However, then 1—ar =z € I
so b —rab = xb € I because [ is an ideal, and rab € I since ab € I, so b € I, which is a
contradiction because I € S.

However, I C I + (a) # R and so I + (a) cannot be in S by maximality of I.
Thus, there exists a finite set of prime ideals Py, ..., P, such that [ + (a) = PyPs- - P,.
Similarly, there exists Q1, ..., @, so [ + (b) = Q1Q2 - - - Q.

However, then
(@Q1Q2 - Qu) (PP Py) = (I + (a))(I + (b)) = I.

This contradicts that I is in .S, so S must in fact be empty. ¥



Kayla Orlinsky
Spring 2013

Problem 3. In the polynomial ring R = C[z, y, z| show that there is a positive integer
m, and polynomials f, g, h € R such that

(@02 — a2 =y + )" = (e —y)’f+ (y— 29+ (x+y+2—3)"h

Solution. By Nullsetellensatz, if I = ((x —y)?, (y — 2)°, (z+y+2—3)7), and g(x,y,2) € R
is such that g(a,b,c) = 0 for all (a,b,c) € V(I), then g € v/T and so there exists an integer
m such that ¢ € I.

Thus, we need only check that g(x,y, 2) = 2¥0y?°28 — 2721 — 2% + 25 is satisfied by

every point in V(I).

The points in V(1) correspond exactly to the zeros of the generators of I. Namely, we
have that (z —y)3 =0, (y — 2)°> =0, (z + y + z — 3)” = 0 simultaneously.

Thus, x =y,y =z2,24+y+z2=3,s0z+x+x =380 x =1, so the only point in V(I) is
(1,1,1) which is clearly satisfied by g since 1-1-1—1-1—-1+1=0.

Thus, there exists an m so g" € 1. ¥
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Problem 4. Let R # (0) be a finite ring such that for any x € R there is y € R with
ryxr = x. Show that R contains an identity element such that, for a,b € R, if ab =1 then

ba = 1.

Solution.

% As written, this problem is not quite correct. Let R = {0, a,b} where addition is
defined by a+a =0,b+b=0,a+b=0>b+a = 0, and 0 behaves as usual. And
multiplication is given by a? = a, b> = b, ab = b, ba = a, and 0 behaves as usual.

e R is nonempty and has a 0 element.

Addition in R is associative and commutative.

R has additive inverses.

Distributivity is immediate since the sum of any two elements in R is zero so
multiplication trivially distributes.

For multiplicative associativity, we check each case:

(a

(ba)b =ab=0b blab) =
(ab)b =0bb="b a(bb)
ba)a = aa =a b(aa) =
(aa)b=ab=">b a(ab) =
(bb)a = ba =a b(ba) = ba =
aaa = aa = a bbb = bb = b

—~

Finally, R is a finite nonzero ring, aba = a and bab = b so for a and b, there is an
element in R satisfying the hypothesis of the problem. However, R does not contain a
multiplicative identity element 1, since ab # ba.

The issue here, is that the y satisfying aya = a is not unique. aba = a and aaa = a,
where a # b by assumption. Thus R need not contain an identity at all in this case.

Assume that R is a nonzero ring such that for each = € R, there exists a unique y € R
SO xYr = X.

Let £ € R be nonzero. Assume that there exists some a € R with xa = 0. Then
z(y + a)r = xyxr + xaxr = vyr = x.
Now, because y is unique, we have that y +a = y and so a = 0.

Thus, za = 0 implies a = 0. Similarly ax = 0 also implies a = 0.

This shows that R contains no zero divisors.
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Now, define

v, R— R
y—zy

If o, is injective, then it is surjective (because R is finite) and so namely, every y € R
can be written as xy. Namely, x is a left identity for R.

If o, is not injective, ker ¢, is not trivial. However, then xa = 0 for some 0 # a € R
which is a contradiction by the above.

Therefore, ¢, is injective and so it is an isomorphism. Namely, x is a left identity of R
via the isomorphic association y ~, zy.

Similarly, we can show that x is also a right identity and namely, we may call z =1 € R.
Now, assume that ab =1 € R.

We have already seen that R has no zero divisors, namely,
bab=b — bab—b=0 — (ba—1)b=0

and so ba = 1 since b is not a zero divisor.

**Note that since R has no zero divisors, zyz = z actually implies that z(yx — 1) =0
and so yr = 1. Similarly, (zy — 1)z = 0 so xy = 1. Namely, every element of R is
invertible and so R is a finite field.
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Problem 5. Let f(x) =z — 2, and let L be the splitting field of f(x) over Q.

(
(

(c
(d) Show there is a subgroup of Gal(L/Q) that is isomorphic to Gal(F'/Q).

a) What is [L : Q]?
b

Show there exists a subfield F' of degree 8 that is Galois over Q.

)
)
) What is Gal(F/Q)?
)

Solution.

(a) Let & be a primitive 15" root of unity. Then, the roots of f(z) are exactly & ¥/2.

Namely, f is separbale and so L/Q is Galois.
Clearly L = Q(&, ¥/2). Now, if ¢(n) denotes the Euler totient function, then

P(15) = p(3)p(5) =2-4=38

and so there are 8 primitive 15" roots of unity.

Therefore,

and
[L:Q = [L:Q(V2)Q(V2): Q= [L:Q(V2)]15
and so [L : Q] > 15 - 8. However, [L: Q] < 15 -8, so we have that

[L:Q]=2%-3-5.

We have already found that F' = Q(§) has degree 8 over Q. Furthermore, this extension
is Galois, since F' is the splitting field of the seprable minimal polynomial of &, which
has degree 8.

We already know that L/Q is Galois. Let G = Gal(L/Q).

By the fundamental theorem of Galois theory, subfields of L Q C F' C L correspond
exactly to subgroups H of G satistying |H| = |Gal(L/F)| = [L : F].

A subfield F of L is Galois over Q if and only if it corresponds to a subgroup H which
is normal in G. Then G/H = Gal(F/Q) and [G : H] = [F : Q] = 8.

Now, because any o € G/H, must permute the roots of the minimal polynomial of &,
which are the primitive powers of &, we have that G/H will be abelian and namely
cyclic.

Thus, G/H = Zs.
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(d) This is a direct result of the fundamental theorem of Galois theory, which states that
G/H = Gal(F/Q) where H = Gal(L/F).

However, since H is normal in G, HP; is a subgroup of GG, where P, denotes a Sylow
2-subgroup of G.

Thus, because
|H||P|  15-8

HNP| 1
by the isomorphism theorems, G = HP.
Thus, G/H = P, which is a subgroup of G.

|HP,| = =15-8 =@,

***Note that it was not asked, but after (c), we actually have enough information to
determine G.
Since, H = Gal(L/F) is a normal subgroup of G of index 8, so |H| = 15.
By the Sylow theorems, n; = 1 mod 5 and njs|3, and n3 = 1 mod 3, and n3|5, so
ns = n3 = 1 and so H has only normal Sylow subgroups and so it is abelian and
isomoprhic to Zis.
However, normal Sylow subgroups of normal subgroups are normal (see Fall 2011:
Problem 5 Claim 3), and so G has a normal Sylow 3 and a normal Sylow 5 subgroup.
Thus, G is abelain and

G = 73 X 75 X g
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Problem 6. Let F/Q be a Galois extension of degree 60, and suppose F contains a
primitive ninth root of unity. Show Gal(F/Q) is solvable.

Solution. Let & be a ninth root of unity. Then if ¢ is the Euler totient function, ¢(9) =
32-3=6,50QC Q&) CF,and [Q(): Q] =6.

Now, K = Q(¢) is clearly Galois over Q since it is the splitting field of a separable
polynomial over Q.

Now, by the fundamental theorem of Galois theory, subfields Q C K C F correspond
exactly to subgroups H C G = Gal(F/Q), and an extension K/Q is Galois if and only if
H = Gal(F/K) is normal in G.

Therefore, H = Gal(F/K) is normal in G, and since [G : H| = |Gal(K/Q)| = 6 so
|H| = 10.

Since in H ns =1 mod 5 and n5|2, ns = 1 so H has a normal Sylow 5-subgroup Ps.
Now, since any o € G/H = Gal(K/Q) permutes the 9 roots of unity, it will be abelian.

Therefore, we obtain a subnormal series for GG of
{e} <P <HJLG

where P5 = Zs is abelian, H/Ps = 7, is abelian, and G/H = Gal(K/Q) is abelian.
So G is solvable.
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Problem 7. Let n be a positive integer. Show that f(x,y) = 2™ + y" + 1 is irreducible
in Clz,y].

Solution. Write 2" +1 = (z — &)(z — £2) -+ (x — £"71) € C[z] where € is a primitive n'®
root of unity.

Then, consider f(z,y) = f(y) € Clz][y]. Since C is a field, it is a UFD, so C[z] is a UFD
and therefore, C[z|[y] is a UFD.

Thus, we can apply Eisensten’s with p = x — £. This is irreducible in C|z]| since it is
linear, and so it is prime because irreducible and prime are equivalent in a UFD.

Since p divides every coefficient of f(y) except the leading coefficient, and p* does

not divide the constant term of f(y). So by Eisenstein, f(z,y) = f(y) is irreducible in
Clzly] = Clz, y]. Y
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