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Problem 1. Let p > 2 be a prime. Describe, up to isomorphism, all groups of order
2p2.

Solution. Let G be a group of order 2p2. Then by Sylow, np ≡ 1 mod p and np|2 so
because p > 2, np = 1. Thus, G has a normal Sylow p-subgroup.

Abelian If G also has a normal Sylow 2-subgroup, then G is abelian and

G ∼= Z2 × Zp2

or
G ∼= Z2 × Zp × Zp

depending on whether or not Pp the Sylow p-subgroup of G is isomorphic to Zp2 or Zp × Zp.
Now, if P2 is a non-normal Sylow 2-subgroup of G, then by the recognizing of semi-direct

products theorem, G is a semi-direct product of its Sylow 2 and Sylow p-subgroups.
Pp
∼= Zp2 If Pp is cyclic, then we can let ϕ : P2 → Aut(Zp2) ∼= Z×

p2
∼= Zp2−p be a

homomorphism.
Let P2 = 〈a〉 and Pp = 〈b〉.
Then because Zp2−p is of even order, there is a nontrivial homomorphism ϕ which will

give a semi-direct product structure to G.
Since Zp2−p is cyclic, its Sylow 2-subgroup is also cyclic and so can only have one element

of order 2. This is because if the Sylow p-subgroup is 〈x〉 where x has order 2n, then if
i < 2n−1, 2i < 2n so xi does not have order 2, and if i > 2n−1, then i = 2n−1 + r for
0 < r < 2n−1 so (xi)2 = x2i = x2n+2r = x2r and 2r < 2n so again, xi does not have order 2.

Thus, the only element of order 2 is x2n−1 .
Thus, we have one possible homorphism ϕ(a) = σ where σ : Pp → Pp is defined by

σ(b) = b−1, this defined multipliation on G by bab−1 = ϕ(a)(b) = b−1.
This gives a structure for G as

G ∼= 〈a, b | a2 = bp2 = 1, ab = b−1a〉 ∼= D2p2

the dihedral group of order 2p2.
Pp
∼= Zp × Zp . Then if ϕ : P2 → Aut(Zp × Zp) ∼= GL2(Fp) we have that |GL2(Fp)| =

(p2 − 1)(p2 − p) and since p2 − p is even, again there exists a nontrivial homomorphism ϕ.
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Let Pp
∼= 〈b〉 × 〈c〉.

Since ϕ(a) will have order 2 and P2 can either act trivially on one or neither of the copies
of Zp inside Pp, we have two possible homomorphisms which generate different semi-direct
products,

ϕ1(a)(b) = b−1 and ϕ1(a)(c) = c, ϕ2(a)(b) = b−1 and ϕ2(a)(c) = c−1.

***Note that the swap function Pp → Pp where (b, c) 7→ (c, b) is an automorphism, and
so ϕ3(a)(b) = b and ϕ3(a)(c) = c−1 is conjugate to ϕ1(a), namely, ϕ1 and ϕ3 generate
isomorphic semi-direct products.

This gives two possible structures for G.

G ∼= 〈a, b, c | a2 = bp = cp = 1, bc = cb, ab = b−1a, ac = ca〉 ∼= D2p × Zp

G ∼= 〈a, b, c | a2 = bp = cp = 1, bc = cb, ab = b−1a, ac = c−1a〉 ∼= Z2 oϕ2 Z2
p

Thus, there are 5 possible structures for G.

Z2 × Zp2

Z2 × Zp × Zp

D2p2

D2p × Zp

〈a, b, c | a2 = bp = cp = 1, bc = cb, ab = b−1a, ac = c−1a〉 ∼= Z2 oϕ2 Z2
p

�
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Problem 2. Let R be a commutative Noetherian ring with 1. Show that every proper
ideal of R is the product of finitely many (not necessarily distinct) prime ideals of R.
(Hint: Consider the set of ideals that are not products of finitely many prime ideals. Also,
note that if R is not a prime ring then IJ = (0) for some non-zero ideals I and J of R).

Solution. Let S be the set of proper ideals of R which are not products of finitely many
prime ideals.

Assume S is nonempty. Because R is noetherian, S contains a maximal element I.
Since I is not prime, there exists a product of elements ab ∈ I such that a /∈ I and b /∈ I

(if no such ab existed then I would be prime).
Then (a)(b) ∈ I since sums of products of ab ∈ I but (a) 6⊂ I and (b) 6⊂ I.
Now, if I+(a) = R, then 1 = x+ra where x ∈ I and r ∈ R. However, then 1−ar = x ∈ I

so b − rab = xb ∈ I because I is an ideal, and rab ∈ I since ab ∈ I, so b ∈ I, which is a
contradiction because I ∈ S.

However, I ⊂ I + (a) 6= R and so I + (a) cannot be in S by maximality of I.
Thus, there exists a finite set of prime ideals P1, ..., Pn such that I + (a) = P1P2 · · ·Pn.
Similarly, there exists Q1, ..., Qm so I + (b) = Q1Q2 · · ·Qm.
However, then

(Q1Q2 · · ·Qm)(P1P2 · · ·Pn) = (I + (a))(I + (b)) = I.

This contradicts that I is in S, so S must in fact be empty. �
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Problem 3. In the polynomial ring R = C[x, y, z] show that there is a positive integer
m, and polynomials f, g, h ∈ R such that

(x16y25z81 − x7z15 − yz9 + x5)m = (x− y)3f + (y − z)5g + (x+ y + z − 3)7h.

Solution. By Nullsetellensatz, if I = ((x− y)3, (y− z)5, (x+ y+ z− 3)7), and g(x, y, z) ∈ R
is such that g(a, b, c) = 0 for all (a, b, c) ∈ V (I), then g ∈

√
I and so there exists an integer

m such that gm ∈ I.
Thus, we need only check that g(x, y, z) = x16y25z81 − x7z15 − yz9 + x5 is satisfied by

every point in V (I).
The points in V (I) correspond exactly to the zeros of the generators of I. Namely, we

have that (x− y)3 = 0, (y − z)5 = 0, (x+ y + z − 3)7 = 0 simultaneously.
Thus, x = y, y = z, x+ y+ z = 3, so x+ x+ x = 3 so x = 1, so the only point in V (I) is

(1, 1, 1) which is clearly satisfied by g since 1 · 1 · 1− 1 · 1− 1 + 1 = 0.
Thus, there exists an m so gm ∈ I. �
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Problem 4. Let R 6= (0) be a finite ring such that for any x ∈ R there is y ∈ R with
xyx = x. Show that R contains an identity element such that, for a, b ∈ R, if ab = 1 then
ba = 1.

Solution.

***As written, this problem is not quite correct. Let R = {0, a, b} where addition is
defined by a + a = 0, b + b = 0, a + b = b + a = 0, and 0 behaves as usual. And
multiplication is given by a2 = a, b2 = b, ab = b, ba = a, and 0 behaves as usual.

• R is nonempty and has a 0 element.

• Addition in R is associative and commutative.

• R has additive inverses.

• Distributivity is immediate since the sum of any two elements in R is zero so
multiplication trivially distributes.

• For multiplicative associativity, we check each case:

(ab)a = ba = a a(ba) = aa = a
(ba)b = ab = b b(ab) = bb = b
(ab)b = bb = b a(bb) = ab = b
(ba)a = aa = a b(aa) = ba = a
(aa)b = ab = b a(ab) = ab = b
(bb)a = ba = a b(ba) = ba = a
aaa = aa = a bbb = bb = b

Finally, R is a finite nonzero ring, aba = a and bab = b so for a and b, there is an
element in R satisfying the hypothesis of the problem. However, R does not contain a
multiplicative identity element 1, since ab 6= ba.
The issue here, is that the y satisfying aya = a is not unique. aba = a and aaa = a,
where a 6= b by assumption. Thus R need not contain an identity at all in this case.

Assume that R is a nonzero ring such that for each x ∈ R, there exists a unique y ∈ R
so xyx = x.

Let x ∈ R be nonzero. Assume that there exists some a ∈ R with xa = 0. Then

x(y + a)x = xyx+ xax = xyx = x.

Now, because y is unique, we have that y + a = y and so a = 0.
Thus, xa = 0 implies a = 0. Similarly ax = 0 also implies a = 0.
This shows that R contains no zero divisors.
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Now, define

ϕx : R→ R

y 7→ xy

If ϕx is injective, then it is surjective (because R is finite) and so namely, every y ∈ R
can be written as xy. Namely, x is a left identity for R.

If ϕx is not injective, kerϕx is not trivial. However, then xa = 0 for some 0 6= a ∈ R
which is a contradiction by the above.

Therefore, ϕx is injective and so it is an isomorphism. Namely, x is a left identity of R
via the isomorphic association y ∼ϕ xy.

Similarly, we can show that x is also a right identity and namely, we may call x = 1 ∈ R.
Now, assume that ab = 1 ∈ R.
We have already seen that R has no zero divisors, namely,

bab = b =⇒ bab− b = 0 =⇒ (ba− 1)b = 0

and so ba = 1 since b is not a zero divisor.

***Note that since R has no zero divisors, xyx = x actually implies that x(yx− 1) = 0
and so yx = 1. Similarly, (xy − 1)x = 0 so xy = 1. Namely, every element of R is
invertible and so R is a finite field.

�
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Problem 5. Let f(x) = x15 − 2, and let L be the splitting field of f(x) over Q.

(a) What is [L : Q]?

(b) Show there exists a subfield F of degree 8 that is Galois over Q.

(c) What is Gal(F/Q)?

(d) Show there is a subgroup of Gal(L/Q) that is isomorphic to Gal(F/Q).

Solution.

(a) Let ξ be a primitive 15th root of unity. Then, the roots of f(x) are exactly ξi 15
√

2.
Namely, f is separbale and so L/Q is Galois.
Clearly L = Q(ξ, 15

√
2). Now, if ϕ(n) denotes the Euler totient function, then

ϕ(15) = ϕ(3)ϕ(5) = 2 · 4 = 8

and so there are 8 primitive 15th roots of unity.
Therefore,

[L : Q] = [L : Q(ξ)][Q(ξ) : Q] = [L : Q(ξ)]8

and
[L : Q] = [L : Q( 15

√
2)][Q( 15

√
2) : Q] = [L : Q( 15

√
2)]15

and so [L : Q] ≥ 15 · 8. However, [L : Q] ≤ 15 · 8, so we have that

[L : Q] = 23 · 3 · 5.

(b) We have already found that F = Q(ξ) has degree 8 over Q. Furthermore, this extension
is Galois, since F is the splitting field of the seprable minimal polynomial of ξ, which
has degree 8.

(c) We already know that L/Q is Galois. Let G = Gal(L/Q).
By the fundamental theorem of Galois theory, subfields of L Q ⊂ F ⊂ L correspond
exactly to subgroups H of G satisfying |H| = |Gal(L/F )| = [L : F ].
A subfield F of L is Galois over Q if and only if it corresponds to a subgroup H which
is normal in G. Then G/H = Gal(F/Q) and [G : H] = [F : Q] = 8.
Now, because any σ ∈ G/H, must permute the roots of the minimal polynomial of ξ,
which are the primitive powers of ξ, we have that G/H will be abelian and namely
cyclic.
Thus, G/H ∼= Z8.
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(d) This is a direct result of the fundamental theorem of Galois theory, which states that
G/H ∼= Gal(F/Q) where H = Gal(L/F ).
However, since H is normal in G, HP2 is a subgroup of G, where P2 denotes a Sylow
2-subgroup of G.
Thus, because

|HP2| =
|H||P2|
|H ∩ P2|

= 15 · 8
1 = 15 · 8 = |G|,

by the isomorphism theorems, G = HP2.

Thus, G/H ∼= P2 which is a subgroup of G.

***Note that it was not asked, but after (c), we actually have enough information to
determine G.
Since, H = Gal(L/F ) is a normal subgroup of G of index 8, so |H| = 15.
By the Sylow theorems, n5 ≡ 1 mod 5 and n5|3, and n3 ≡ 1 mod 3, and n3|5, so
n5 = n3 = 1 and so H has only normal Sylow subgroups and so it is abelian and
isomoprhic to Z15.
However, normal Sylow subgroups of normal subgroups are normal (see Fall 2011:
Problem 5 Claim 3), and so G has a normal Sylow 3 and a normal Sylow 5 subgroup.
Thus, G is abelain and

G ∼= Z3 × Z5 × Z8

�
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Problem 6. Let F/Q be a Galois extension of degree 60, and suppose F contains a
primitive ninth root of unity. Show Gal(F/Q) is solvable.

Solution. Let ξ be a ninth root of unity. Then if ϕ is the Euler totient function, ϕ(9) =
32 − 3 = 6, so Q ⊂ Q(ξ) ⊂ F , and [Q(ξ) : Q] = 6.

Now, K = Q(ξ) is clearly Galois over Q since it is the splitting field of a separable
polynomial over Q.

Now, by the fundamental theorem of Galois theory, subfields Q ⊂ K ⊂ F correspond
exactly to subgroups H ⊂ G = Gal(F/Q), and an extension K/Q is Galois if and only if
H = Gal(F/K) is normal in G.

Therefore, H = Gal(F/K) is normal in G, and since [G : H] = |Gal(K/Q)| = 6 so
|H| = 10.

Since in H n5 ≡ 1 mod 5 and n5|2, n5 = 1 so H has a normal Sylow 5-subgroup P5.
Now, since any σ ∈ G/H = Gal(K/Q) permutes the 9th roots of unity, it will be abelian.
Therefore, we obtain a subnormal series for G of

{e} E P5 E H E G

where P5 ∼= Z5 is abelian, H/P5 ∼= Z2 is abelian, and G/H = Gal(K/Q) is abelian.
So G is solvable.

�
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Problem 7. Let n be a positive integer. Show that f(x, y) = xn + yn + 1 is irreducible
in C[x, y].

Solution. Write xn + 1 = (x− ξ)(x− ξ2) · · · (x− ξn−1) ∈ C[x] where ξ is a primitive nth

root of unity.
Then, consider f(x, y) = f(y) ∈ C[x][y]. Since C is a field, it is a UFD, so C[x] is a UFD

and therefore, C[x][y] is a UFD.
Thus, we can apply Eisensten’s with p = x − ξ. This is irreducible in C[x] since it is

linear, and so it is prime because irreducible and prime are equivalent in a UFD.
Since p divides every coefficient of f(y) except the leading coefficient, and p2 does

not divide the constant term of f(y). So by Eisenstein, f(x, y) = f(y) is irreducible in
C[x][y] = C[x, y]. �
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