# Kayla Orlinsky Algebra Exam Spring 2013 

Problem 1. Let $p>2$ be a prime. Describe, up to isomorphism, all groups of order $2 p^{2}$.

Solution. Let $G$ be a group of order $2 p^{2}$. Then by Sylow, $n_{p} \equiv 1 \bmod p$ and $n_{p} \mid 2$ so because $p>2, n_{p}=1$. Thus, $G$ has a normal Sylow $p$-subgroup.

Abelian If $G$ also has a normal Sylow 2-subgroup, then $G$ is abelian and

$$
G \cong \mathbb{Z}_{2} \times \mathbb{Z}_{p^{2}}
$$

or

$$
G \cong \mathbb{Z}_{2} \times \mathbb{Z}_{p} \times \mathbb{Z}_{p}
$$

depending on whether or not $P_{p}$ the Sylow $p$-subgroup of $G$ is isomorphic to $\mathbb{Z}_{p^{2}}$ or $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$.
Now, if $P_{2}$ is a non-normal Sylow 2-subgroup of $G$, then by the recognizing of semi-direct products theorem, $G$ is a semi-direct product of its Sylow 2 and Sylow p-subgroups.
$P_{p} \cong \mathbb{Z}_{p^{2}}$ If $P_{p}$ is cyclic, then we can let $\varphi: P_{2} \rightarrow \operatorname{Aut}\left(\mathbb{Z}_{p^{2}}\right) \cong \mathbb{Z}_{p^{2}}^{\times} \cong \mathbb{Z}_{p^{2}-p}$ be a homomorphism.

Let $P_{2}=\langle a\rangle$ and $P_{p}=\langle b\rangle$.
Then because $\mathbb{Z}_{p^{2}-p}$ is of even order, there is a nontrivial homomorphism $\varphi$ which will give a semi-direct product structure to $G$.

Since $\mathbb{Z}_{p^{2}-p}$ is cyclic, its Sylow 2-subgroup is also cyclic and so can only have one element of order 2. This is because if the Sylow $p$-subgroup is $\langle x\rangle$ where $x$ has order $2^{n}$, then if $i<2^{n-1}, 2 i<2^{n}$ so $x^{i}$ does not have order 2, and if $i>2^{n-1}$, then $i=2^{n-1}+r$ for $0<r<2^{n-1}$ so $\left(x^{i}\right)^{2}=x^{2 i}=x^{2^{n}+2 r}=x^{2 r}$ and $2 r<2^{n}$ so again, $x^{i}$ does not have order 2 .

Thus, the only element of order 2 is $x^{2^{n-1}}$.
Thus, we have one possible homorphism $\varphi(a)=\sigma$ where $\sigma: P_{p} \rightarrow P_{p}$ is defined by $\sigma(b)=b^{-1}$, this defined multipliation on $G$ by $b a b^{-1}=\varphi(a)(b)=b^{-1}$.

This gives a structure for $G$ as

$$
G \cong\left\langle a, b \mid a^{2}=b^{p^{2}}=1, a b=b^{-1} a\right\rangle \cong D_{2 p^{2}}
$$

the dihedral group of order $2 p^{2}$.
$P_{p} \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p}$. Then if $\varphi: P_{2} \rightarrow \operatorname{Aut}\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p}\right) \cong G L_{2}\left(\mathbb{F}_{p}\right)$ we have that $\left|G L_{2}\left(\mathbb{F}_{p}\right)\right|=$ $\left(p^{2}-1\right)\left(p^{2}-p\right)$ and since $p^{2}-p$ is even, again there exists a nontrivial homomorphism $\varphi$.

Let $P_{p} \cong\langle b\rangle \times\langle c\rangle$.
Since $\varphi(a)$ will have order 2 and $P_{2}$ can either act trivially on one or neither of the copies of $\mathbb{Z}_{p}$ inside $P_{p}$, we have two possible homomorphisms which generate different semi-direct products,

$$
\varphi_{1}(a)(b)=b^{-1} \text { and } \varphi_{1}(a)(c)=c, \varphi_{2}(a)(b)=b^{-1} \text { and } \varphi_{2}(a)(c)=c^{-1} .
$$

${ }^{* * *}$ Note that the swap function $P_{p} \rightarrow P_{p}$ where $(b, c) \mapsto(c, b)$ is an automorphism, and so $\varphi_{3}(a)(b)=b$ and $\varphi_{3}(a)(c)=c^{-1}$ is conjugate to $\varphi_{1}(a)$, namely, $\varphi_{1}$ and $\varphi_{3}$ generate isomorphic semi-direct products.

This gives two possible structures for $G$.

$$
\begin{gathered}
G \cong\left\langle a, b, c \mid a^{2}=b^{p}=c^{p}=1, b c=c b, a b=b^{-1} a, a c=c a\right\rangle \cong D_{2 p} \times \mathbb{Z}_{p} \\
G \cong\left\langle a, b, c \mid a^{2}=b^{p}=c^{p}=1, b c=c b, a b=b^{-1} a, a c=c^{-1} a\right\rangle \cong \mathbb{Z}_{2} \rtimes_{\varphi_{2}} \mathbb{Z}_{p}^{2}
\end{gathered}
$$

Thus, there are 5 possible structures for $G$.

$$
\begin{gathered}
\mathbb{Z}_{2} \times \mathbb{Z}_{p^{2}} \\
\mathbb{Z}_{2} \times \mathbb{Z}_{p} \times \mathbb{Z}_{p} \\
D_{2 p^{2}} \\
D_{2 p} \times \mathbb{Z}_{p} \\
\left\langle a, b, c \mid a^{2}=b^{p}=c^{p}=1, b c=c b, a b=b^{-1} a, a c=c^{-1} a\right\rangle \cong \mathbb{Z}_{2} \rtimes_{\varphi_{2}} \mathbb{Z}_{p}^{2}
\end{gathered}
$$

Problem 2. Let $R$ be a commutative Noetherian ring with 1 . Show that every proper ideal of $R$ is the product of finitely many (not necessarily distinct) prime ideals of $R$. (Hint: Consider the set of ideals that are not products of finitely many prime ideals. Also, note that if $R$ is not a prime ring then $I J=(0)$ for some non-zero ideals $I$ and $J$ of $R$ ).

Solution. Let $S$ be the set of proper ideals of $R$ which are not products of finitely many prime ideals.

Assume $S$ is nonempty. Because $R$ is noetherian, $S$ contains a maximal element $I$.
Since $I$ is not prime, there exists a product of elements $a b \in I$ such that $a \notin I$ and $b \notin I$ (if no such $a b$ existed then $I$ would be prime).

Then $(a)(b) \in I$ since sums of products of $a b \in I$ but $(a) \not \subset I$ and $(b) \not \subset I$.
Now, if $I+(a)=R$, then $1=x+r a$ where $x \in I$ and $r \in R$. However, then $1-a r=x \in I$ so $b-r a b=x b \in I$ because $I$ is an ideal, and rab $\in I$ since $a b \in I$, so $b \in I$, which is a contradiction because $I \in S$.

However, $I \subset I+(a) \neq R$ and so $I+(a)$ cannot be in $S$ by maximality of $I$.
Thus, there exists a finite set of prime ideals $P_{1}, \ldots, P_{n}$ such that $I+(a)=P_{1} P_{2} \cdots P_{n}$.
Similarly, there exists $Q_{1}, \ldots, Q_{m}$ so $I+(b)=Q_{1} Q_{2} \cdots Q_{m}$.
However, then

$$
\left(Q_{1} Q_{2} \cdots Q_{m}\right)\left(P_{1} P_{2} \cdots P_{n}\right)=(I+(a))(I+(b))=I
$$

This contradicts that $I$ is in $S$, so $S$ must in fact be empty.

Problem 3. In the polynomial ring $R=\mathbb{C}[x, y, z]$ show that there is a positive integer $m$, and polynomials $f, g, h \in R$ such that

$$
\left(x^{16} y^{25} z^{81}-x^{7} z^{15}-y z^{9}+x^{5}\right)^{m}=(x-y)^{3} f+(y-z)^{5} g+(x+y+z-3)^{7} h
$$

Solution. By Nullsetellensatz, if $I=\left((x-y)^{3},(y-z)^{5},(x+y+z-3)^{7}\right)$, and $g(x, y, z) \in R$ is such that $g(a, b, c)=0$ for all $(a, b, c) \in V(I)$, then $g \in \sqrt{I}$ and so there exists an integer $m$ such that $g^{m} \in I$.

Thus, we need only check that $g(x, y, z)=x^{16} y^{25} z^{81}-x^{7} z^{15}-y z^{9}+x^{5}$ is satisfied by every point in $V(I)$.

The points in $V(I)$ correspond exactly to the zeros of the generators of $I$. Namely, we have that $(x-y)^{3}=0,(y-z)^{5}=0,(x+y+z-3)^{7}=0$ simultaneously.

Thus, $x=y, y=z, x+y+z=3$, so $x+x+x=3$ so $x=1$, so the only point in $V(I)$ is $(1,1,1)$ which is clearly satisfied by $g$ since $1 \cdot 1 \cdot 1-1 \cdot 1-1+1=0$.

Thus, there exists an $m$ so $g^{m} \in I$.

Problem 4. Let $R \neq(0)$ be a finite ring such that for any $x \in R$ there is $y \in R$ with $x y x=x$. Show that $R$ contains an identity element such that, for $a, b \in R$, if $a b=1$ then $b a=1$.

## Solution.

***As written, this problem is not quite correct. Let $R=\{0, a, b\}$ where addition is defined by $a+a=0, b+b=0, a+b=b+a=0$, and 0 behaves as usual. And multiplication is given by $a^{2}=a, b^{2}=b, a b=b, b a=a$, and 0 behaves as usual.

- $R$ is nonempty and has a 0 element.
- Addition in $R$ is associative and commutative.
- $R$ has additive inverses.
- Distributivity is immediate since the sum of any two elements in $R$ is zero so multiplication trivially distributes.
- For multiplicative associativity, we check each case:

$$
\begin{array}{cc}
(a b) a=b a=a & a(b a)=a a=a \\
(b a) b=a b=b & b(a b)=b b=b \\
(a b) b=b b=b & a(b b)=a b=b \\
(b a) a=a a=a & b(a a)=b a=a \\
(a a) b=a b=b & a(a b)=a b=b \\
(b b) a=b a=a & b(b a)=b a=a \\
a a a=a a=a & b b b=b b=b
\end{array}
$$

Finally, $R$ is a finite nonzero ring, $a b a=a$ and $b a b=b$ so for $a$ and $b$, there is an element in $R$ satisfying the hypothesis of the problem. However, $R$ does not contain a multiplicative identity element 1 , since $a b \neq b a$.
The issue here, is that the $y$ satisfying $a y a=a$ is not unique. $a b a=a$ and $a a a=a$, where $a \neq b$ by assumption. Thus $R$ need not contain an identity at all in this case.

Assume that $R$ is a nonzero ring such that for each $x \in R$, there exists a unique $y \in R$ so $x y x=x$.

Let $x \in R$ be nonzero. Assume that there exists some $a \in R$ with $x a=0$. Then

$$
x(y+a) x=x y x+x a x=x y x=x
$$

Now, because $y$ is unique, we have that $y+a=y$ and so $a=0$.
Thus, $x a=0$ implies $a=0$. Similarly $a x=0$ also implies $a=0$.
This shows that $R$ contains no zero divisors.

Now, define

$$
\begin{aligned}
\varphi_{x}: R & \rightarrow R \\
y & \mapsto x y
\end{aligned}
$$

If $\varphi_{x}$ is injective, then it is surjective (because $R$ is finite) and so namely, every $y \in R$ can be written as $x y$. Namely, $x$ is a left identity for $R$.

If $\varphi_{x}$ is not injective, $\operatorname{ker} \varphi_{x}$ is not trivial. However, then $x a=0$ for some $0 \neq a \in R$ which is a contradiction by the above.

Therefore, $\varphi_{x}$ is injective and so it is an isomorphism. Namely, $x$ is a left identity of $R$ via the isomorphic association $y \sim_{\varphi} x y$.

Similarly, we can show that $x$ is also a right identity and namely, we may call $x=1 \in R$.
Now, assume that $a b=1 \in R$.
We have already seen that $R$ has no zero divisors, namely,

$$
b a b=b \Longrightarrow b a b-b=0 \Longrightarrow(b a-1) b=0
$$

and so $b a=1$ since $b$ is not a zero divisor.
***Note that since $R$ has no zero divisors, $x y x=x$ actually implies that $x(y x-1)=0$ and so $y x=1$. Similarly, $(x y-1) x=0$ so $x y=1$. Namely, every element of $R$ is invertible and so $R$ is a finite field.

Problem 5. Let $f(x)=x^{15}-2$, and let $L$ be the splitting field of $f(x)$ over $\mathbb{Q}$.
(a) What is $[L: \mathbb{Q}]$ ?
(b) Show there exists a subfield $F$ of degree 8 that is Galois over $\mathbb{Q}$.
(c) What is $\operatorname{Gal}(F / \mathbb{Q})$ ?
(d) Show there is a subgroup of $\operatorname{Gal}(L / \mathbb{Q})$ that is isomorphic to $\operatorname{Gal}(F / \mathbb{Q})$.

## Solution.

(a) Let $\xi$ be a primitive $15^{\text {th }}$ root of unity. Then, the roots of $f(x)$ are exactly $\xi \sqrt[15]{2}$. Namely, $f$ is separbale and so $L / \mathbb{Q}$ is Galois.
Clearly $L=\mathbb{Q}(\xi, \sqrt[15]{2})$. Now, if $\varphi(n)$ denotes the Euler totient function, then

$$
\varphi(15)=\varphi(3) \varphi(5)=2 \cdot 4=8
$$

and so there are 8 primitive $15^{\text {th }}$ roots of unity.
Therefore,

$$
[L: \mathbb{Q}]=[L: \mathbb{Q}(\xi)][\mathbb{Q}(\xi): \mathbb{Q}]=[L: \mathbb{Q}(\xi)] 8
$$

and

$$
[L: \mathbb{Q}]=[L: \mathbb{Q}(\sqrt[15]{2})][\mathbb{Q}(\sqrt[15]{2}): \mathbb{Q}]=[L: \mathbb{Q}(\sqrt[15]{2})] 15
$$

and so $[L: \mathbb{Q}] \geq 15 \cdot 8$. However, $[L: \mathbb{Q}] \leq 15 \cdot 8$, so we have that

$$
[L: \mathbb{Q}]=2^{3} \cdot 3 \cdot 5 .
$$

(b) We have already found that $F=\mathbb{Q}(\xi)$ has degree 8 over $\mathbb{Q}$. Furthermore, this extension is Galois, since $F$ is the splitting field of the seprable minimal polynomial of $\xi$, which has degree 8 .
(c) We already know that $L / \mathbb{Q}$ is Galois. Let $G=\operatorname{Gal}(L / \mathbb{Q})$.

By the fundamental theorem of Galois theory, subfields of $L \mathbb{Q} \subset F \subset L$ correspond exactly to subgroups $H$ of $G$ satisfying $|H|=|\operatorname{Gal}(L / F)|=[L: F]$.
A subfield $F$ of $L$ is Galois over $\mathbb{Q}$ if and only if it corresponds to a subgroup $H$ which is normal in $G$. Then $G / H=\operatorname{Gal}(F / \mathbb{Q})$ and $[G: H]=[F: \mathbb{Q}]=8$.
Now, because any $\sigma \in G / H$, must permute the roots of the minimal polynomial of $\xi$, which are the primitive powers of $\xi$, we have that $G / H$ will be abelian and namely cyclic.
Thus, $G / H \cong \mathbb{Z}_{8}$.
(d) This is a direct result of the fundamental theorem of Galois theory, which states that $G / H \cong \operatorname{Gal}(F / \mathbb{Q})$ where $H=\operatorname{Gal}(L / F)$.
However, since $H$ is normal in $G, H P_{2}$ is a subgroup of $G$, where $P_{2}$ denotes a Sylow 2-subgroup of $G$.
Thus, because

$$
\left|H P_{2}\right|=\frac{|H|\left|P_{2}\right|}{\left|H \cap P_{2}\right|}=\frac{15 \cdot 8}{1}=15 \cdot 8=|G|
$$

by the isomorphism theorems, $G=H P_{2}$.
Thus, $G / H \cong P_{2}$ which is a subgroup of $G$.
${ }^{* * *}$ Note that it was not asked, but after (c), we actually have enough information to determine $G$.
Since, $H=\operatorname{Gal}(L / F)$ is a normal subgroup of $G$ of index 8 , so $|H|=15$.
By the Sylow theorems, $n_{5} \equiv 1 \bmod 5$ and $n_{5} \mid 3$, and $n_{3} \equiv 1 \bmod 3$, and $n_{3} \mid 5$, so $n_{5}=n_{3}=1$ and so $H$ has only normal Sylow subgroups and so it is abelian and isomoprhic to $\mathbb{Z}_{15}$.
However, normal Sylow subgroups of normal subgroups are normal (see Fall 2011: Problem 5 Claim 3), and so $G$ has a normal Sylow 3 and a normal Sylow 5 subgroup. Thus, $G$ is abelain and

$$
G \cong \mathbb{Z}_{3} \times \mathbb{Z}_{5} \times \mathbb{Z}_{8}
$$

Problem 6. Let $F / \mathbb{Q}$ be a Galois extension of degree 60 , and suppose $F$ contains a primitive ninth root of unity. Show $\operatorname{Gal}(F / \mathbb{Q})$ is solvable.

Solution. Let $\xi$ be a ninth root of unity. Then if $\varphi$ is the Euler totient function, $\varphi(9)=$ $3^{2}-3=6$, so $\mathbb{Q} \subset \mathbb{Q}(\xi) \subset F$, and $[\mathbb{Q}(\xi): \mathbb{Q}]=6$.

Now, $K=\mathbb{Q}(\xi)$ is clearly Galois over $\mathbb{Q}$ since it is the splitting field of a separable polynomial over $\mathbb{Q}$.

Now, by the fundamental theorem of Galois theory, subfields $\mathbb{Q} \subset K \subset F$ correspond exactly to subgroups $H \subset G=\operatorname{Gal}(F / \mathbb{Q})$, and an extension $K / \mathbb{Q}$ is Galois if and only if $H=\operatorname{Gal}(F / K)$ is normal in $G$.

Therefore, $H=\operatorname{Gal}(F / K)$ is normal in $G$, and since $[G: H]=|\operatorname{Gal}(K / \mathbb{Q})|=6$ so $|H|=10$.

Since in $H n_{5} \equiv 1 \bmod 5$ and $n_{5} \mid 2, n_{5}=1$ so $H$ has a normal Sylow 5 -subgroup $P_{5}$.
Now, since any $\sigma \in G / H=\operatorname{Gal}(K / \mathbb{Q})$ permutes the $9^{\text {th }}$ roots of unity, it will be abelian.
Therefore, we obtain a subnormal series for $G$ of

$$
\{e\} \unlhd P_{5} \unlhd H \unlhd G
$$

where $P_{5} \cong \mathbb{Z}_{5}$ is abelian, $H / P_{5} \cong \mathbb{Z}_{2}$ is abelian, and $G / H=\operatorname{Gal}(K / \mathbb{Q})$ is abelian.
So $G$ is solvable.

Problem 7. Let $n$ be a positive integer. Show that $f(x, y)=x^{n}+y^{n}+1$ is irreducible in $\mathbb{C}[x, y]$.

Solution. Write $x^{n}+1=(x-\xi)\left(x-\xi^{2}\right) \cdots\left(x-\xi^{n-1}\right) \in \mathbb{C}[x]$ where $\xi$ is a primitive $n^{\text {th }}$ root of unity.

Then, consider $f(x, y)=f(y) \in \mathbb{C}[x][y]$. Since $\mathbb{C}$ is a field, it is a UFD, so $\mathbb{C}[x]$ is a UFD and therefore, $\mathbb{C}[x][y]$ is a UFD.

Thus, we can apply Eisensten's with $p=x-\xi$. This is irreducible in $\mathbb{C}[x]$ since it is linear, and so it is prime because irreducible and prime are equivalent in a UFD.

Since $p$ divides every coefficient of $f(y)$ except the leading coefficient, and $p^{2}$ does not divide the constant term of $f(y)$. So by Eisenstein, $f(x, y)=f(y)$ is irreducible in $\mathbb{C}[x][y]=\mathbb{C}[x, y]$.

