Kayla Orlinsky
 Algebra Exam Fall 2013

Problem 1. Let H be a subgroup of the symmetric group S_{5}. Can the order of H be 15,20 or 30 ?

Solution. First, S_{5} does have a subgroup of order 20. Since by Sylow, $n_{5} \equiv 1 \bmod 5$ and $n_{5} \mid 24, n_{5}=1,6$. Since S_{5} has no normal subgroups other than $A_{5}, n_{5}=6$. Therefore, by Sylow, $\left[S_{5}: N_{S_{5}}\left(P_{5}\right)\right]=n_{5}=6$ where P_{5} is a Sylow 5 -subgroup of S_{5}.

Therefore, $N_{S_{5}}\left(P_{5}\right)$ is a subgroup of S_{5} of order $120 / 6=20$.
To disprove the other subgroups, we prove a claim.
Claim 1. For $n \geq 5$, there are no subgroups of S_{n} with $2<\left[S_{n}: H\right]<n$.
Proof. Note that A_{n} is always a subgroup of S_{n} of index 2.
Let H be a subgroup of S_{n} such that $2<\left[S_{n}: H\right]=k<n$. Let S_{n} act on $X=S_{n} / H$ the set of left cosets of H by left-multiplication.

Then because $2<|X|<n$, this induces a homomorphism from S_{n} to S_{k} where $k=|X|$.

Specifically, this defines a map

$$
\begin{aligned}
\varphi: S_{n} & \rightarrow S_{|X|}=S_{k} \\
a & \mapsto \sigma_{a}
\end{aligned}
$$

where $\sigma_{a}: X \rightarrow X$ is defined by $\sigma_{a}(b H)=a b H$.
Now, we note that if a is in the kernel of this homomorphism, then $a b H=b H$ for all $b \in S_{n}$ and so namely, $a b h=b h^{\prime}$ for $h, h^{\prime} \in H$ so $a=b h^{\prime} h^{-1} b^{-1} \in b H b^{-1}$.

Thus, $a \in b H b^{-1}$ for all $b \in S_{n}$ and so $a \in e H e^{-1}=H$.
Therefore, $\operatorname{ker}(\varphi) \subset H$.
Finally, we note that for $n \geq 5$, the only normal subgroups of S_{n} are the trivial subgroup, S_{n} itself, and A_{n}. Since $\left[S_{n}: A_{n}\right]=2<\left[S_{n}: H\right]<n$, $\operatorname{ker}(\varphi) \neq S_{n}$ and not A_{n}.

Namely, the kernel is trivial and so we have an embedding of S_{n} into a symmetric group of strictly smaller degree, which is of course, nonsense.

Thus, H cannot exist.

By the claim, since $\left|S_{5}\right|=120$, If $|H|=30$ then $\left[S_{5}: H\right]=120 / 30=4<5$, so there are no subgroups of order 30 .

If H had a subgroup of order 15 and P_{2} was a sylow 2 -subgroup of S_{5}, then

$$
\left|H P_{2}\right|=\frac{|H|\left|P_{2}\right|}{\left|H \cap P_{2}\right|}=\frac{15 \cdot 8}{1}=120=|G|
$$

it must be that $S_{5}=H P_{2}$.
Now, in H, by Sylow $n_{5} \mid 3$ and $n_{5} \equiv 1 \bmod 5$, so $n_{5}=1$, and $n_{3} \equiv 1 \bmod 3$ and $n_{3} \mid 5$ so $n_{3}=1$. Thus H has a normal Sylow 3 and Sylow 5 -subgroup, namely H is normal, since the product of two normal subgroups is normal.

However, S_{5} has no normal non-trivial subgroups other than A_{5} which has order 60 . Namely, this is not possible.

Problem 2. Let R be a PID and M a finitely generated torsion module of R. Show that M is a cyclic R-module if and only if for any prime \mathfrak{p} of R either $\mathfrak{p} M=M$ or $M / \mathfrak{p} M$ is a cyclic R-module.

Solution.

Abstract

Assume M is cyclic. Then $M=(x)=x R=\{r x \mid r \in R\}$ for some $x \in X$. However, then $M / P M$ is certainly cyclic since any quotient of a cyclic module must also be cyclic.

This is because we can define $\pi: M \rightarrow M / P M$ to be the quotient map, which is surjective. Then $M / P M \cong \pi((x))=(\pi(x))$ and so is cyclic. ***Note that quotiens of cyclic modules are cyclic always. M need not be torsion for this to be true.

\Longleftarrow Assume $P M=M$ or $M / P M$ is cyclic for all nonzero prime ideals P.
By the structure theorem, there is a chain of ideals

$$
\left(d_{1}\right) \subset\left(d_{2}\right) \subset \cdots \subset\left(d_{n}\right)
$$

such that

$$
M \cong R /\left(d_{1}\right) \oplus \cdots \oplus R /\left(d_{n}\right)
$$

Note that $d_{i} \mid d_{i-1}$ for all i.
If $\left(d_{n}\right)$ is not maximal, then there is a maximal (prime) ideal P such that $\left(d_{n}\right) \subset P$.
Then if $P M=P /\left(d_{1}\right) \oplus \cdots \oplus P /\left(d_{n}\right)=M$ we have that $P /\left(d_{i}\right) \cong R /\left(d_{i}\right)$ for all i, so $P=R$ which is a contradiction.

Thus, $M / P M$ is cyclic so

$$
M / P M \cong\left(R /\left(d_{1}\right)\right) /\left(P /\left(d_{1}\right)\right) \oplus \cdots \oplus\left(R /\left(d_{n}\right)\right) /\left(P /\left(d_{n}\right)\right) \cong(R / P)^{n}
$$

However, $M / P M$ is cyclic and $(R / P)^{n} \cong R /(a)$ for some a forces $n=1$. Namely, M is cyclic.
***Note that torsion is not a necessary condition, only finitely generated is necessary for the backward implication.

Problem 3. Let $R=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ and suppose I is a proper non-zero ideal of R. The coefficients of a matrix $A \in M_{n}(R)$ are polynomials in x_{1}, \ldots, x_{n} and can be evaluated at $\beta \in \mathbb{C}^{n}$; write $A(\beta) \in M_{n}(\mathbb{C})$ for the matrix so obtained. If for some $A \in M_{n}(R)$ and all $\alpha \in \operatorname{Var}(I), A(\alpha)=0_{n \times n}$, show that for some integer $m, A^{m} \in M_{n}(I)$.

Solution. By Nullstellensatz, if $A(\alpha)=0$ for all $\alpha \in V(I)$, then every polynomial in every entry of A is in \sqrt{I}. Namely, if $f_{i j}$ is the polynomial in the $(A)_{i j}$ entry, then $f_{i j} \in \sqrt{I}$ so there exists $m_{i j}$ so $f_{i j}^{m_{i j}} \in I$.

Let $m=\operatorname{lcm}\left\{m_{i j}\right\}$. Then the entries of $A^{n^{2}}$ are sum of products of n^{2} of the $f_{i j}$. Namely, $A^{n^{2} m}$ will be a sum of products where at least one of the $f_{i j}$ is raised to the power m, and so namely, that whole product is in I because I is a 2 -sided (because R is commutative) ideal.

Thus, $A^{n^{2} m} \in M_{n}(I)$.

Problem 4. If R is a noetherian unital ring, show that the power series ring $R[[x]]$ is also a noetherian unital ring.

Solution. We will show that every ideal of $R[[x]]$ is finitely generated. Note that a formal power series $f(x)$ is invertible if and only if its constant term is a unit. Namely, $R[[x]]$ has a unit.

Now, let I be an ideal of $R[[x]]$.
Then, let

$$
I_{n}=\left\{a \in R \mid a x^{n}+\text { higher order terms } \in I\right\}
$$

Then I_{n} is an ideal of R since I is an ideal of $R[[x]]$
Then we have an increasing chain

$$
I_{0} \subset I_{1} \subset I_{2} \subset \cdots
$$

since if $a \in I_{n}$, then $a x^{n}+b x^{n+1}+\cdots \in I$, so $x\left(a x^{n}+b x^{n+1}+\cdots\right) \in I$ so $\left(a x^{n+1}+b x^{n+2}+\cdots\right) \in$ I because I is a left ideal. Therefore, $a \in I_{n+1}$ so $I_{n} \subset I_{n+1}$.

Finally, the chain must terminate since R is noetherian, and so $I_{m}=I_{n}$ for all $m \geq n$, some n. Thus, if $a x^{n+1}+\cdots \in I$ then $a x^{n}+\cdots \in I$.

Now, because R is noetherian, all ideals are finitely generated and so let $I_{i}=\left(a_{1}^{(i)}, a_{2}^{(i)}, \ldots, a_{n_{i}}^{(i)}\right)$ for $i=0, \ldots, n$. Note that we can let $m=\max \left\{n_{i}\right\}$ and then write

$$
I_{i}=\left(a_{1}^{(i)}, a_{2}^{(i)}, \ldots, a_{m}^{(i)}\right) \quad a_{j}^{(i)}=0 \forall j>n_{i} .
$$

By definition of the I_{i}, there exist the following set of polynomials in I

$$
F=\left[\begin{array}{cccc}
a_{1}^{(0)}+\cdots & a_{2}^{(0)}+\cdots & \cdots & a_{m}^{(0)}+\cdots \\
a_{1}^{(1)} x+\cdots & a_{2}^{(1)} x+\cdots & \cdots & a_{m}^{(1)} x+\cdots \\
& \vdots & \ddots & \vdots \\
a_{1}^{(n)} x^{n}+\cdots & a_{2}^{(n)} x^{n}+\cdots & \cdots & a_{m}^{(n)} x^{n}+\cdots
\end{array}\right]
$$

Then, if $f_{i, j}=(F)_{i, j}$ we have that $f_{i, j} \in I$ for all i, j.
Finally, let $f \in I$. Let $f(x)=\sum_{i=0}^{\infty} \alpha_{i} x^{i}$.
Then, α_{j} is a linear combination of the $a_{i}^{(j)}$ because they are exactly the generators of I_{j}. Therefore, we can write the first n-terms of f using the $f_{i, j}$, namely,

$$
f(x)-\sum_{i=0}^{n} \sum_{j=1}^{m} b_{j}^{(i)} f_{i, j}=\alpha_{n+1}^{\prime} x^{n+1}+\cdots \quad b_{j}^{(i)} \in R .
$$

Namely, $\alpha_{n+1}^{\prime} \in I_{n+1}=I_{n}$ because the chain terminates at n.

Thus, we can write the next $n+1$ terms in the sequence in terms of the $f_{n, j}$. Specifically,

$$
f(x)-\sum_{i=0}^{n} \sum_{j=1}^{m} b_{j}^{(i)} f_{i, j}-x^{n+1} \sum_{j=1}^{n} b_{j}^{(n)} f_{n, j}=\alpha_{2 n+2}^{\prime \prime} x^{2 n+2}+\cdots
$$

Since the next $n+1$ block can again be generated by the $f_{n, j}$ for $j=1, \ldots, m$ we finally have by grouping, that

$$
f(x)=\sum_{i=0}^{n} \sum_{j=1}^{m} b_{j}^{(i)} f_{i, j}+\left(\sum_{k=0}^{\infty} c_{k} x^{k(n+1)}\right) f_{n, 1}+\cdots+\left(\sum_{k=0}^{\infty} c_{k}^{\prime} x^{k(n+1)}\right) f_{n, m}
$$

and so at last,

$$
I=\left(f_{i, j}\right)_{i=0, . ., n, j=1, \ldots, m}
$$

and is finitely generated.
Thus, $R[[x]]$ is noetherian since all its ideals are finitely generated.

Problem 5. Let p be a prime. Prove that $f(x)=x^{p}-x-1$ is irreducible over $\mathbb{Z} / p \mathbb{Z}$. What is the Galois group? (Hint: observe that if α is a root of $f(x)$, then so is $\alpha+i$ for $i \in \mathbb{Z} / p \mathbb{Z}$.)

Solution. First, note that $\mathbb{Z}_{p} \cong \mathbb{F}_{p}$. Let α be a root of f in the algebraic closure of \mathbb{F}_{p}. Then $f(\alpha)=\alpha^{p}-\alpha-1=0$ so $\alpha^{p}-\alpha=1$. Since

$$
f(\alpha+i)=(\alpha+i)^{p}-(\alpha+i)-1=\alpha^{p}+i^{p}-\alpha-i-1=\alpha^{p}-\alpha-1=f(\alpha)=0
$$

since $i^{p}=i$ for all $i \in \mathbb{F}_{p}$.
Thus, f has p roots of the form, $\alpha, \alpha+1, \ldots, \alpha+(p-1)$.
Assume $f(x)=g(x) h(x)$ for $g, h \in \mathbb{F}_{p}[x]$ where g is the minimal polynomial of α (so g is irreducible and has α as a root). Then because $\alpha \notin \mathbb{F}_{p}, g$ has at least one other $\alpha+i$ as a root. Therefore,

$$
f(x+i)=g(x+i) h(x+i)=f(x)=g(x) h(x) .
$$

Thus, $g(x+i)$ is monic and also irreducible and also has α as a root, and so $g(x)=g(x+i)$. However, then the permutation $x \mapsto x+i$ preserves the roots of g, so g has the same roots as f and so $g=f$.

Thus, f is irreducible.
Finally, let $L=\mathbb{F}_{p}(\alpha)$. Then L is the splitting field for a separable polynomial and so L / \mathbb{F}_{p} is Galois.

Clearly $\left[L: \mathbb{F}_{p}\right]=p$ and $G=\operatorname{Gal}\left(L / \mathbb{F}_{p}\right)$ is generated by $\alpha \mapsto \alpha+1$. Thus, $G \cong \mathbb{Z}_{p}$.
*

Problem 6. Let R be a finite ring with no nilpotent elements. Show that R is a direct product of fields.

Solution. Since R is finite, it is necessarily artinian.
Let $x \in J(R)$. Then because $J(R)$ is right quasi-regular, $1-x$ is a unit in R.
Then, we construct a decreasing chain of ideals

$$
(x) \supset\left(x^{2}\right) \supset \cdots
$$

which must terminate for some n. Namely, $\left(x^{n}\right)=\left(x^{n+1}\right)$ so $x^{n}=r x^{n+1}$ for some $r \in R$. However, $r x \in J(R)$ and so $1-r x$ is a unit. Therefore,

$$
x^{n}=r x^{n+1} \Longrightarrow x^{n}(1-r x)=0 \Longrightarrow x^{n}=0
$$

Namely, x is nilpotent. Since R has no nilpotent elements, $J(R)=0$.
Thus, by Artin Wedderburn,

$$
R \cong M_{n_{1}}\left(D_{1}\right) \oplus \cdots \oplus M_{n_{k}}\left(D_{k}\right)
$$

where the D_{k} are division rings.
Now, R contains no nilpotent elements, however matrix rings contain nilpotent elements over any division ring, since

$$
\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & 1 \\
0 & 0 & \cdots & 0 & 0 \\
& \vdots & \ddots & \vdots & \\
0 & 0 & \cdots & 0 & 0
\end{array}\right]
$$

is nilpotent of degree 2 over any division ring where $1 \neq 0$.
Namely, $n_{i}=1$ for all i.
Finally, because the D_{i} are finite, by Wedderburn, the D_{i} are all fields.
Thus, R is a finite direct sum (isomorphic to a finite direct product) of fields.

Problem 7. Let $K \subset \mathbb{C}$ be the field obtained by adjoining all roots of unity in \mathbb{C} to \mathbb{Q}. Suppose $p_{1}<p_{2}$ are primes, $a \in \mathbb{C} \backslash K$, and write L for a splitting field of

$$
g(x)=\left(x^{p_{1}}-a\right)\left(x^{p_{2}}-a\right)
$$

over K. Assuming each factor of $g(x)$ is irreducible, determine the order and the structure of $\operatorname{Gal}(L / K)$.

Solution. First, $g(x)$ is not a polynomial in $K[x]$, since $a \notin K$. However, if we assume that $a \in \mathbb{Q}$ is such that each factor of $g(x)$ is irreducible, then we do have that $g \in K[x]$.

Then, since L is the splitting field of a separable polynomial (since each factor of g is irreducible over \mathbb{Q}, it is separable), we have that L / K is Galois.

Furthermore, each $\sigma \in G=\operatorname{Gal}(L / K)$ will be uniquely determined by how it permutes the roots of each irreducible factor.

Namely, G will be generated by the σ_{i}, where σ_{i} is a permutation of the roots of $x^{p_{i}}-y$, fixing the other roots of g.

This implies that G will be abelian since each σ_{i} will fix all but the $p_{i}^{\text {th }}$ roots of unity and will fix all $p_{i}^{\text {th }}$ roots of y.

Therefore,

$$
G \cong \mathbb{Z}_{p_{1} p_{2}}
$$

