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Problem 1. Let H be a subgroup of the symmetric group S5. Can the order of H be
15, 20 or 30?

Solution. First, S5 does have a subgroup of order 20. Since by Sylow, n5 ≡ 1 mod 5 and
n5|24, n5 = 1, 6. Since S5 has no normal subgroups other than A5, n5 = 6. Therefore, by
Sylow, [S5 : NS5(P5)] = n5 = 6 where P5 is a Sylow 5-subgroup of S5.

Therefore, NS5(P5) is a subgroup of S5 of order 120/6 = 20.
To disprove the other subgroups, we prove a claim.

Claim 1. For n ≥ 5, there are no subgroups of Sn with 2 < [Sn : H] < n.

Proof. Note that An is always a subgroup of Sn of index 2.
Let H be a subgroup of Sn such that 2 < [Sn : H] = k < n. Let Sn act on

X = Sn/H the set of left cosets of H by left-multiplication.
Then because 2 < |X| < n, this induces a homomorphism from Sn to Sk

where k = |X|.
Specifically, this defines a map

ϕ : Sn → S|X| = Sk

a 7→ σa

where σa : X → X is defined by σa(bH) = abH.
Now, we note that if a is in the kernel of this homomorphism, then abH = bH

for all b ∈ Sn and so namely, abh = bh′ for h, h′ ∈ H so a = bh′h−1b−1 ∈ bHb−1.

Thus, a ∈ bHb−1 for all b ∈ Sn and so a ∈ eHe−1 = H.
Therefore, ker(ϕ) ⊂ H.
Finally, we note that for n ≥ 5, the only normal subgroups of Sn are

the trivial subgroup, Sn itself, and An. Since [Sn : An] = 2 < [Sn : H] < n,
ker(ϕ) 6= Sn and not An.

Namely, the kernel is trivial and so we have an embedding of Sn into a
symmetric group of strictly smaller degree, which is of course, nonsense.

Thus, H cannot exist. �

1



Kayla Orlinsky
Fall 2013

By the claim, since |S5| = 120, If |H| = 30 then [S5 : H] = 120/30 = 4 < 5, so there are
no subgroups of order 30.

If H had a subgroup of order 15 and P2 was a sylow 2-subgroup of S5, then

|HP2| =
|H||P2|
|H ∩ P2|

= 15 · 8
1 = 120 = |G|

it must be that S5 = HP2.
Now, in H, by Sylow n5|3 and n5 ≡ 1 mod 5, so n5 = 1, and n3 ≡ 1 mod 3 and n3|5

so n3 = 1. Thus H has a normal Sylow 3 and Sylow 5-subgroup, namely H is normal, since
the product of two normal subgroups is normal.

However, S5 has no normal non-trivial subgroups other than A5 which has order 60.
Namely, this is not possible. �
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Problem 2. Let R be a PID and M a finitely generated torsion module of R. Show
that M is a cyclic R-module if and only if for any prime p of R either pM = M or M/pM
is a cyclic R-module.

Solution.
=⇒ Assume M is cyclic. Then M = (x) = xR = {rx | r ∈ R} for some x ∈ X.

However, then M/PM is certainly cyclic since any quotient of a cyclic module must also be
cyclic.

This is because we can define π : M → M/PM to be the quotient map, which is
surjective. Then M/PM ∼= π((x)) = (π(x)) and so is cyclic.

***Note that quotiens of cyclic modules are cyclic always. M need not be torsion for
this to be true.

⇐= Assume PM = M or M/PM is cyclic for all nonzero prime ideals P .
By the structure theorem, there is a chain of ideals

(d1) ⊂ (d2) ⊂ · · · ⊂ (dn)

such that
M ∼= R/(d1)⊕ · · · ⊕R/(dn).

Note that di|di−1 for all i.
If (dn) is not maximal, then there is a maximal (prime) ideal P such that (dn) ⊂ P .
Then if PM = P/(d1) ⊕ · · · ⊕ P/(dn) = M we have that P/(di) ∼= R/(di) for all i, so

P = R which is a contradiction.
Thus, M/PM is cyclic so

M/PM ∼= (R/(d1))/(P/(d1))⊕ · · · ⊕ (R/(dn))/(P/(dn)) ∼= (R/P )n

However, M/PM is cyclic and (R/P )n ∼= R/(a) for some a forces n = 1. Namely, M is
cyclic.

***Note that torsion is not a necessary condition, only finitely generated is necessary
for the backward implication.

�
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Problem 3. Let R = C[x1, ..., xn] and suppose I is a proper non-zero ideal of R. The
coefficients of a matrix A ∈Mn(R) are polynomials in x1, ..., xn and can be evaluated at
β ∈ Cn; write A(β) ∈Mn(C) for the matrix so obtained. If for some A ∈Mn(R) and all
α ∈ V ar(I), A(α) = 0n×n, show that for some integer m, Am ∈Mn(I).

Solution. By Nullstellensatz, if A(α) = 0 for all α ∈ V (I), then every polynomial in every
entry of A is in

√
I. Namely, if fij is the polynomial in the (A)ij entry, then fij ∈

√
I so

there exists mij so fmij

ij ∈ I.

Let m = lcm{mij}. Then the entries of An2 are sum of products of n2 of the fij . Namely,
An2m will be a sum of products where at least one of the fij is raised to the power m, and so
namely, that whole product is in I because I is a 2-sided (because R is commutative) ideal.

Thus, An2m ∈Mn(I). �
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Problem 4. If R is a noetherian unital ring, show that the power series ring R[[x]] is
also a noetherian unital ring.

Solution. We will show that every ideal of R[[x]] is finitely generated. Note that a formal
power series f(x) is invertible if and only if its constant term is a unit. Namely, R[[x]] has a
unit.

Now, let I be an ideal of R[[x]].
Then, let

In = {a ∈ R | axn + higher order terms ∈ I}.

Then In is an ideal of R since I is an ideal of R[[x]]
Then we have an increasing chain

I0 ⊂ I1 ⊂ I2 ⊂ · · ·

since if a ∈ In, then axn+bxn+1+· · · ∈ I, so x(axn+bxn+1+· · · ) ∈ I so (axn+1+bxn+2+· · · ) ∈
I because I is a left ideal. Therefore, a ∈ In+1 so In ⊂ In+1.

Finally, the chain must terminate since R is noetherian, and so Im = In for all m ≥ n,
some n. Thus, if axn+1 + · · · ∈ I then axn + · · · ∈ I.

Now, becauseR is noetherian, all ideals are finitely generated and so let Ii = (a(i)
1 , a

(i)
2 , ..., a

(i)
ni

)
for i = 0, ..., n. Note that we can let m = max{ni} and then write

Ii = (a(i)
1 , a

(i)
2 , ..., a

(i)
m ) a

(i)
j = 0∀j > ni.

By definition of the Ii, there exist the following set of polynomials in I

F =


a

(0)
1 + · · · a

(0)
2 + · · · · · · a(0)

m + · · ·
a

(1)
1 x+ · · · a

(1)
2 x+ · · · · · · a(1)

m x+ · · ·
... . . . ...

a
(n)
1 xn + · · · a

(n)
2 xn + · · · · · · a(n)

m xn + · · ·


Then, if fi,j = (F )i,j we have that fi,j ∈ I for all i, j.

Finally, let f ∈ I. Let f(x) =
∞∑

i=0
αix

i.

Then, αj is a linear combination of the a(j)
i because they are exactly the generators of Ij .

Therefore, we can write the first n-terms of f using the fi,j, namely,

f(x)−
n∑

i=0

m∑
j=1

b
(i)
j fi,j = α′n+1x

n+1 + · · · b
(i)
j ∈ R.

Namely, α′n+1 ∈ In+1 = In because the chain terminates at n.
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Thus, we can write the next n+ 1 terms in the sequence in terms of the fn,j . Specifically,

f(x)−
n∑

i=0

m∑
j=1

b
(i)
j fi,j − xn+1

n∑
j=1

b
(n)
j fn,j = α′′2n+2x

2n+2 + · · ·

Since the next n+ 1 block can again be generated by the fn,j for j = 1, ...,m we finally
have by grouping, that

f(x) =
n∑

i=0

m∑
j=1

b
(i)
j fi,j +

( ∞∑
k=0

ckx
k(n+1)

)
fn,1 + · · ·+

( ∞∑
k=0

c′kx
k(n+1)

)
fn,m

and so at last,
I = (fi,j)i=0,..,n,j=1,...,m

and is finitely generated.
Thus, R[[x]] is noetherian since all its ideals are finitely generated.

�
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Problem 5. Let p be a prime. Prove that f(x) = xp − x− 1 is irreducible over Z/pZ.
What is the Galois group? (Hint: observe that if α is a root of f(x), then so is α + i for
i ∈ Z/pZ.)

Solution. First, note that Zp
∼= Fp. Let α be a root of f in the algebraic closure of Fp.

Then f(α) = αp − α− 1 = 0 so αp − α = 1. Since

f(α + i) = (α + i)p − (α + i)− 1 = αp + ip − α− i− 1 = αp − α− 1 = f(α) = 0

since ip = i for all i ∈ Fp.

Thus, f has p roots of the form, α, α + 1, ..., α + (p− 1).
Assume f(x) = g(x)h(x) for g, h ∈ Fp[x] where g is the minimal polynomial of α (so g is

irreducible and has α as a root). Then because α /∈ Fp, g has at least one other α+ i as a
root. Therefore,

f(x+ i) = g(x+ i)h(x+ i) = f(x) = g(x)h(x).

Thus, g(x+i) is monic and also irreducible and also has α as a root, and so g(x) = g(x+i).
However, then the permutation x 7→ x+ i preserves the roots of g, so g has the same roots
as f and so g = f.

Thus, f is irreducible.
Finally, let L = Fp(α). Then L is the splitting field for a separable polynomial and so

L/Fp is Galois.
Clearly [L : Fp] = p and G = Gal(L/Fp) is generated by α 7→ α + 1. Thus, G ∼= Zp. �
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Problem 6. Let R be a finite ring with no nilpotent elements. Show that R is a direct
product of fields.

Solution. Since R is finite, it is necessarily artinian.
Let x ∈ J(R). Then because J(R) is right quasi-regular, 1− x is a unit in R.
Then, we construct a decreasing chain of ideals

(x) ⊃ (x2) ⊃ · · ·

which must terminate for some n. Namely, (xn) = (xn+1) so xn = rxn+1 for some r ∈ R.
However, rx ∈ J(R) and so 1− rx is a unit. Therefore,

xn = rxn+1 =⇒ xn(1− rx) = 0 =⇒ xn = 0.

Namely, x is nilpotent. Since R has no nilpotent elements, J(R) = 0.
Thus, by Artin Wedderburn,

R ∼= Mn1(D1)⊕ · · · ⊕Mnk
(Dk)

where the Dk are division rings.
Now, R contains no nilpotent elements, however matrix rings contain nilpotent elements

over any division ring, since 
0 0 · · · 0 1
0 0 · · · 0 0

... . . . ...
0 0 · · · 0 0


is nilpotent of degree 2 over any division ring where 1 6= 0.

Namely, ni = 1 for all i.
Finally, because the Di are finite, by Wedderburn, the Di are all fields.
Thus, R is a finite direct sum (isomorphic to a finite direct product) of fields. �
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Problem 7. Let K ⊂ C be the field obtained by adjoining all roots of unity in C to Q.
Suppose p1 < p2 are primes, a ∈ C\K, and write L for a splitting field of

g(x) = (xp1 − a)(xp2 − a)

over K. Assuming each factor of g(x) is irreducible, determine the order and the structure
of Gal(L/K).

Solution. First, g(x) is not a polynomial in K[x], since a 6∈ K. However, if we assume that
a ∈ Q is such that each factor of g(x) is irreducible, then we do have that g ∈ K[x].

Then, since L is the splitting field of a separable polynomial (since each factor of g is
irreducible over Q, it is separable), we have that L/K is Galois.

Furthermore, each σ ∈ G = Gal(L/K) will be uniquely determined by how it permutes
the roots of each irreducible factor.

Namely, G will be generated by the σi, where σi is a permutation of the roots of xpi − y,
fixing the other roots of g.

This implies that G will be abelian since each σi will fix all but the pth
i roots of unity

and will fix all pth
i roots of y.

Therefore,
G ∼= Zp1p2 .

�
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