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Problem 1. Let I be an ideal of R = C[x1, ..., xn]. Show that dimCR/I is finite if and
only if I is contained in only finitely many maximal ideals of R.

Solution. =⇒ Assume R/I is a finite dimensional algebra over C. Then R/I is artinian,
since proper ideals are sub-algebras of strictly smaller degree.

Thus, if S = {M1M2 · · ·Mk |Mi maximal ideal of R/I} is the set of finite products of
maximal ideals in R/I. S is nonempty so S contains a minimal element in R/I, M1M2 · · ·Mk.
Let N be some other maximal ideal of R/I. Then NM1 · · ·Mk ⊂M1 · · ·Mk so

NM1 · · ·Mk = M1 · · ·Mk ⊂ N.

However, N is maximal and so prime, thus Mi ⊂ N for some i. However, by maximality,
Mi = N .

Thus, these are the only maximal ideals of R/I. By the correspondence theorem, there
is a 1-to-1 correspondence between maximal ideals of R containing I and maximal ideals of
R/I.

Since R/I has only finitely many maximal ideals, there are only finitely many maximal
ideals of R containing I.

⇐= Assume I is contained in only finitely many maximal ideals of R. Note that R is
Noetherian by the Hilbert Basis theorem, and so all ideals are finitely generated.

Since I is contained in only finitely many maximal ideals, V (I) contains only finitely
many points. Namely, by Nullstellensatza,

√
I
⋂

a∈Cn

Ma is a finite intersection

where Ma is the maximal ideal (by Nullstellensatz) of the form (x1 − a1, ..., xn − an) for
a = (a1, ..., an).

Thus,
√
I = ⋂n

i=1 Mai
where I ⊂Mai

for all i.
Since

√
I is finitely generated,

√
I = (f1, f2, ..., fk), and for each fi there exists mi so

fmi
i ∈ I.

Let m = lcm{mi}. Then

I ⊂
√
I =

n⋂
i=1

Mai
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and
I ⊃ (

√
I)m =

(
n⋂

i=1
Mai

)m

=
n⋂

i=1
Mm

ai
.

Thus, the Chinese remainder theorem, since Mai
are pairwise coprime, Mm

ai
are all

pairwise coprime (since if Mm
ai

+Mm
aj

is contained in some maximal ideal M , then M contains
both Mm

ai
and Mm

aj
and so must contain both Mai

and Maj
which forces M = R).

Therefore,
R/
√
I

m ∼= R/ ∩i M
m
ai

∼= R/
∏

i

Mm
ai

∼=
∏
R/Mm

ai
.

Claim 1. If F is a field and if L = F [x1, ..., xn]/M is a field, then L is a finite
field extension of F .

Proof. We proceed by induction on n.
Basecase: let L = F [a1] be a field. Then for f(a1) ∈ L there exists g(a1) ∈ L

such that f(a1)g(a1) = 1 ∈ L and so a1 satisfies h(x) = f(x)g(x)− 1. Namely,
a1 is algebraic over F and so L is a finite field extension of F.

Assume L = F [a1, ..., ak] is a finite field extension of F for all k ≤ n.
Then let L = F [a1, ..., an][an+1]. Since L is a field, by the same reasoning

as the basecase, L is algebraic over F [a1, ..., an]. However, by the inductive
hypothesis, F [a1, ..., an] is a finite field extension of F and so

[L : F ] = [L : F [a1, ..., an]][F [a1, ..., an] : F ] <∞.

�

Thus, by the claim, R/Mai
is a finite field extension of C and so namely, it is finite

dimensional over C.
Then, R/Mm

ai
is also finite dimensional sinceMm

ai
⊂Mai

so we can injectR/Mm
ai
↪→ R/Mai

which is finite dimensional, so R/Mm
ai

is finite dimensional, and so R/
√
I

m is finite dimensional
since it is a product of finite dimensional algebras.

Finally,
R/I ∼= (R/

√
I

m
)/(I/

√
I

m
)

is a quotient of a finite dimensional algebra, and so R/I is a finite dimensional C-algebra.
�

2



Kayla Orlinsky
Spring 2012

Problem 2. . If G is a group with |G| = 72 · 112 · 19, show that G must be abelian and
describe the possible structures of G.

Solution. By Sylow, n7 ≡ 1 mod 7 and n7|112 · 19. Since 112 ≡ 2 mod 7, 11 · 19 ≡ 6
mod 7, 112 · 19 ≡ 3 mod 7, n7 = 1.

Thus, G has a normal Sylow 7-subgroup P7.
Thus, H = P7P11 is a subgroup of G where P11 is a Sylow 11-subgroup of G.
Now, let X = G/H the set of let cosets of H. Then |X| = 19.
Let G act on X by left multplication. Then this defines a homomorphism

ϕ : G→ S|X| = S19

a 7→ σa : X → X σa(gH) = agH

Note that ϕ is not an embedding since 112 does not divide 19!. Therefore, 11 divides
| ker(ϕ)| and so there exists an element x ∈ ker(ϕ) of order 11.

Now, if ϕ(a) = Id, then agH = gH for all g ∈ G so a ∈ gHg−1 for all g ∈ G.
Namely, ker(ϕ) =

⋂
g∈G

gHg−1. Note also that P7 is normal in G and so because gP7g
−1 =

P7 ⊂ gHg−1 for all g.
Therefore,

| ker(ϕ)| =

∣∣∣∣∣∣
⋂

g∈G

gHg−1

∣∣∣∣∣∣ ≥ 72 · 11.

Namely, |ϕ(G)| = 11 · 19, or 19, namely ϕ(G) is abelian by Sylow.
However, G acts transitively on X, since for gH, aH ∈ X,

gH = ga−1aH = ga−1(aH) = g0(aH) g0 = ga−1.

Therefore, ϕ(G), which is necessarily abelian based on its order, is a transitive subgroup of S19,
and so it has order 19. If the order were larger, then there would exist x = ϕ(a)(1) = ϕ(b)(1)
and ϕ(a)(y) 6= ϕ(b)(y). Thus, by transitivity, there is ϕ(c)(x) = y, then

ϕ(c)ϕ(a)ϕ(c)ϕ(b)(1) = ϕ(c)ϕ(a)ϕ(c)(x) = ϕ(c)ϕ(a)(y)

and

ϕ(c)ϕ(b)ϕ(c)ϕ(a)(1) = ϕ(c)ϕ(b)ϕ(c)(x) = ϕ(c)ϕ(b)(y)

which cannot be equal to ϕ(b)(y) 6= ϕ(a)(y) which contradicts that ϕ(G) is abelian.
Thus, |ϕ(G)| = 19 so | ker(ϕ)| = |H| so ker(ϕ) = H and so H is normal in G. Therefore,

because H has a normal Sylow 11-subgroup (since n11|49 and n11 ≡ 1 mod 11 in H, n11 = 1)
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and since normal Sylow subgroups of normal subgroups are normal in the whole group (see
Fall 2011: Problem 5 Claim 3), G has a normal Sylow 11-subgroup.

Now, by the recognizing of semi-direct products theorem, if G is not abelian then it is a
semi-direct product of its Sylow subgroups.

However, Aut(P7P11) ∼= Aut(P7)×Aut(P11) since 11 and 7 are coprime. Thus, depending
on whether P7 ∼= Z7 × Z7 or Z49 we have that

Aut(P7) ∼= Z49−7 = Z42 Aut(P7) ∼= GL2(F7).

In either case, |Aut(P7)| = 42 or (72 − 1)(72 − 7) = 48 · 42 and 19 does not divide either of
these.

Similarly, Aut(P11) has order 112 − 11 = 110 or (112 − 1)(112 − 11) = 120 · 110, and
again there are no elements of order 19 to choose from.

Therefore, any homomorphism ϕ : P19 → Aut(P7P11) will be trivial and so the only
possible structure for G is as an abelian group.

There are 4 possible abelian structures for G.

Z72 × Z112 × Z19

Z7 × Z7 × Z112 × Z19

Z72 × Z11 × Z11 × Z19

Z7 × Z7 × Z11 × Z11 × Z19

�
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Problem 3. Let F be a finite field and G a finite group with GCD{charF, |G|} = 1.
The group algebra F [G] is an algebra over F with G as an F -basis, elements α = ∑

G agg
for ag ∈ G, and multiplication that extends ag · bh = ab · gh. Show that any x ∈ F [G]
that is not a zero left divisor (i.e. if xy = 0 for y ∈ F [G] then y = 0) must be invertible
in F [G].

Solution. Let x ∈ F [G] be not a zero left divisor. Then because F [G] is a finite field and
G is a finite group, F [G] is a finite dimensional F -algebra and so it is artinian (both left and
right artinian) as an F -algebra.

Namely, we can construct a decreasing chain of left ideals

(x) ⊃ (x2) ⊃ · · ·

which must terminate after a finite number of steps. Namely, there exists n so (xm) = (xn)
for all m ≥ n.

Thus, (xn+1) = (xn) so there exists y ∈ F [G] such that xn = yxn+1. Namely, (1−yx)xn =
0. Since x is not a left-zero divisor, (1 − yx)xn−1 = 0, and recursivley we obtain that
(1− yx) = 0 so yx = 1. Namely, x has a left inverse in G.

Now, assume x is a right zero-divisor. Then there exists a ∈ F [G] so xa = 0. Thus,

(yx)a = 1a = a y(xa) = y(0) = 0 =⇒ a = 0.

Therefore, x is not a right-zero divisor, and since F [G] is right artinian we could preform
the same reasoning as before on (x), (x2), ... as right ideals to obtain that x has a right inverse
z.

Now, since
(yx)z = 1z = z y(xz) = y1 = y

we have that y = z and so y is a 2-sided inverse for x. �
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Problem 4. If p(x) = x8 + 2x6 + 3x4 + 2x2 + 1 ∈ Q[x] and if Q ⊂M ⊂ C is a splitting
field for p(x) over Q, argue that Gal(M/Q) is solvable.

Solution. Let u = x2 and h(u) = u4 + 2u3 + 3u2 + 2u+ 1. Then the zeros of of p(x) are
precisely the square roots of the zeros of h(u). Namely, if L is the splitting field of h(u) over
Q then M/L will certainly be a radical extension so we need only check L/Q.

Now, h′(u) = 4u3 + 6u3 + 6u + 2 and h′(u) < 0 for all u ≤ −1/3 and h′(u) > 0 for all
u ≥ 0. However, for any α ∈ (−1/3, 0),

h(α) = α4 + 2α3 + 3α2 + 2α + 1 > −2
9 −

2
3 + 1 = −8

9 + 1 > 0.

Therefore, h has no real roots, and namely no rational roots. Thus, h has a pair of
complex conjugate roots, α, α, β, β.

Therefore, L is the splitting field of a separable polynomial over Q and so L is Galois
over Q.

Since [L : Q] ≤ 4!, and Gal(L/Q) ↪→ S4 which is solvable, we have that Gal(L/Q) is
solvable since subgroups of solvable groups are solvable.

Finally, if G = Gal(M/Q), then by the fundamental theorem of Galois theory, H =
Gal(M/L) is normal in G and G/H = Gal(L/Q). Namely, since H is normal in G and is
solvable (as we already discussed M/L is a radical extensions) and G/H is solvable, we have
that G is solvable. �
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Problem 5. Let R be a commutative ring with 1 and let x1, ..., xn ∈ R so that
x1y1 + · · ·+ xnyn = 1 for some yi ∈ R. Let A = {(r1, ..., rn) ∈ Rn |x1r1 + · · ·+ xnrn = 0}.
Show that Rn ∼=R A⊕R, that A has n generators, and that when R = F [x] for F a field
then AR is free of rank n− 1.

Solution. Let

ϕ : Rn → R

(r1, ..., rn) 7→ x1r1 + · · ·+ xnrn

Then ϕ is an R-module homomorphism and is surjective since (y1, ..., yn) 7→ 1.
Clearly ker(ϕ) = A, thus we have a short exact sequence

0 A Rn R 0

and since R is a projective R-module (both left and right because R is commutative),
this implies that

Rn ∼= R⊕ A.

Since R = x1R + x2R + · · · + xnR, Rn = (x1R + x2R + · · · + xnR)n and since A is a
submodule of Rn, A has less than or equal to n generators.

However, because Rn/A ∼= R is cyclic, A has at least n generators.
Thus, A has exactly n generators.
When R = F [x], then R is a PID and so because A is finitely generated, by the structure

theorem, A is a direct sum of its free and torsion parts.
Namely, we have that A ∼= Ra ⊕ T (A) where T (A) is the torsion part of A.
Now, since

Rn ∼= R⊕Ra ⊕ T (A) ∼= Ra+1 ⊕ T (A)

it must be that a+ 1 = n so a = n− 1 and T (A) = 0.
Thus, A is a free R-module of rank n− 1. �
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Problem 6. For p a prime let Fp be the field of p elements and K an extension field of
Fp of dimension 72.

(a) Describe the possible structures of Gal(K/Fp).

(b) If g(x) ∈ Fp[x] is irreduicble of degree 72, argue that K is a splitting field of g(x)
over Fp.

(c) Which integers d > 0 have irreducibles in Fp[x] of degree d that split in K?

Solution.

(a) Since K has q = p72 elements, K is the splitting field of xq − x,which is separable over
Fp. Thus, K/Fp is Galois.
Since Galois extensions over finite fields are always cyclic extensions, Gal(K/Fp) ∼= Z72.

(b) If g(x) ∈ Fp[x] is irreduicble of degree 72, and α is a root of g(x), then [Fp(α) : Fp] =
72 = [K : Fp]. Therefore, since finite fields of the same order are isomorphic, K = Fp(α)
and so α ∈ K.

(c) If d|72 then by the same reasoning, any polynomial of degree d will split completely in
K.

�
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