Kayla Orlinsky Algebra Exam Spring 2012

Problem 1. Let I be an ideal of $R=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. Show that $\operatorname{dim}_{\mathbb{C}} R / I$ is finite if and only if I is contained in only finitely many maximal ideals of R.

Solution. $\quad \Longrightarrow$ Assume R / I is a finite dimensional algebra over \mathbb{C}. Then R / I is artinian, since proper ideals are sub-algebras of strictly smaller degree.

Thus, if $S=\left\{M_{1} M_{2} \cdots M_{k} \mid M_{i}\right.$ maximal ideal of $\left.R / I\right\}$ is the set of finite products of maximal ideals in R / I. S is nonempty so S contains a minimal element in $R / I, M_{1} M_{2} \cdots M_{k}$. Let N be some other maximal ideal of R / I. Then $N M_{1} \cdots M_{k} \subset M_{1} \cdots M_{k}$ so

$$
N M_{1} \cdots M_{k}=M_{1} \cdots M_{k} \subset N
$$

However, N is maximal and so prime, thus $M_{i} \subset N$ for some i. However, by maximality, $M_{i}=N$.

Thus, these are the only maximal ideals of R / I. By the correspondence theorem, there is a 1-to-1 correspondence between maximal ideals of R containing I and maximal ideals of R / I.

Since R / I has only finitely many maximal ideals, there are only finitely many maximal ideals of R containing I.
\Longleftarrow Assume I is contained in only finitely many maximal ideals of R. Note that R is Noetherian by the Hilbert Basis theorem, and so all ideals are finitely generated.

Since I is contained in only finitely many maximal ideals, $V(I)$ contains only finitely many points. Namely, by Nullstellensatza,

$$
\sqrt{I} \bigcap_{a \in \mathbb{C}^{n}} M_{a} \quad \text { is a finite intersection }
$$

where M_{a} is the maximal ideal (by Nullstellensatz) of the form $\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right)$ for $a=\left(a_{1}, \ldots, a_{n}\right)$.

Thus, $\sqrt{I}=\bigcap_{i=1}^{n} M_{a_{i}}$ where $I \subset M_{a_{i}}$ for all i.
Since \sqrt{I} is finitely generated, $\sqrt{I}=\left(f_{1}, f_{2}, \ldots, f_{k}\right)$, and for each f_{i} there exists m_{i} so $f_{i}^{m_{i}} \in I$.

Let $m=\operatorname{lcm}\left\{m_{i}\right\}$. Then

$$
I \subset \sqrt{I}=\bigcap_{i=1}^{n} M_{a_{i}}
$$

and

$$
I \supset(\sqrt{I})^{m}=\left(\bigcap_{i=1}^{n} M_{a_{i}}\right)^{m}=\bigcap_{i=1}^{n} M_{a_{i}}^{m} .
$$

Thus, the Chinese remainder theorem, since $M_{a_{i}}$ are pairwise coprime, $M_{a_{i}}^{m}$ are all pairwise coprime (since if $M_{a_{i}}^{m}+M_{a_{j}}^{m}$ is contained in some maximal ideal M, then M contains both $M_{a_{i}}^{m}$ and $M_{a_{j}}^{m}$ and so must contain both $M_{a_{i}}$ and $M_{a_{j}}$ which forces $M=R$).

Therefore,

$$
R / \sqrt{I} m \cong R / \cap_{i} M_{a_{i}}^{m} \cong R / \prod_{i} M_{a_{i}}^{m} \cong \prod R / M_{a_{i}}^{m}
$$

Claim 1. If F is a field and if $L=F\left[x_{1}, \ldots, x_{n}\right] / M$ is a field, then L is a finite field extension of F.

Proof. We proceed by induction on n.
Basecase: let $L=F\left[a_{1}\right]$ be a field. Then for $f\left(a_{1}\right) \in L$ there exists $g\left(a_{1}\right) \in L$ such that $f\left(a_{1}\right) g\left(a_{1}\right)=1 \in L$ and so a_{1} satisfies $h(x)=f(x) g(x)-1$. Namely, a_{1} is algebraic over F and so L is a finite field extension of F.

Assume $L=F\left[a_{1}, \ldots, a_{k}\right]$ is a finite field extension of F for all $k \leq n$.
Then let $L=F\left[a_{1}, \ldots, a_{n}\right]\left[a_{n+1}\right]$. Since L is a field, by the same reasoning as the basecase, L is algebraic over $F\left[a_{1}, \ldots, a_{n}\right]$. However, by the inductive hypothesis, $F\left[a_{1}, \ldots, a_{n}\right]$ is a finite field extension of F and so

$$
[L: F]=\left[L: F\left[a_{1}, \ldots, a_{n}\right]\right]\left[F\left[a_{1}, \ldots, a_{n}\right]: F\right]<\infty
$$

Thus, by the claim, $R / M_{a_{i}}$ is a finite field extension of \mathbb{C} and so namely, it is finite dimensional over \mathbb{C}.

Then, $R / M_{a_{i}}^{m}$ is also finite dimensional since $M_{a_{i}}^{m} \subset M_{a_{i}}$ so we can inject $R / M_{a_{i}}^{m} \hookrightarrow R / M_{a_{i}}$ which is finite dimensional, so $R / M_{a_{i}}^{m}$ is finite dimensional, and so R / \sqrt{I}^{m} is finite dimensional since it is a product of finite dimensional algebras.

Finally,

$$
R / I \cong\left(R / \sqrt{I}^{m}\right) /\left(I / \sqrt{I}^{m}\right)
$$

is a quotient of a finite dimensional algebra, and so R / I is a finite dimensional \mathbb{C}-algebra.

Problem 2. . If G is a group with $|G|=7^{2} \cdot 11^{2} \cdot 19$, show that G must be abelian and describe the possible structures of G.

Solution. By Sylow, $n_{7} \equiv 1 \bmod 7$ and $n_{7} \mid 11^{2} \cdot 19$. Since $11^{2} \equiv 2 \bmod 7,11 \cdot 19 \equiv 6$ $\bmod 7,11^{2} \cdot 19 \equiv 3 \bmod 7, n_{7}=1$.

Thus, G has a normal Sylow 7-subgroup P_{7}.
Thus, $H=P_{7} P_{11}$ is a subgroup of G where P_{11} is a Sylow 11-subgroup of G.
Now, let $X=G / H$ the set of let cosets of H. Then $|X|=19$.
Let G act on X by left multplication. Then this defines a homomorphism

$$
\begin{aligned}
\varphi: G & \rightarrow S_{|X|}=S_{19} \\
a & \mapsto \sigma_{a}: X \rightarrow X \quad \sigma_{a}(g H)=a g H
\end{aligned}
$$

Note that φ is not an embedding since 11^{2} does not divide 19!. Therefore, 11 divides $|\operatorname{ker}(\varphi)|$ and so there exists an element $x \in \operatorname{ker}(\varphi)$ of order 11.

Now, if $\varphi(a)=\mathrm{Id}$, then $a g H=g H$ for all $g \in G$ so $a \in g H g^{-1}$ for all $g \in G$.
Namely, $\operatorname{ker}(\varphi)=\bigcap_{g \in G} g H g^{-1}$. Note also that P_{7} is normal in G and so because $g P_{7} g^{-1}=$ $P_{7} \subset g H^{-1}$ for all g.

Therefore,

$$
|\operatorname{ker}(\varphi)|=\left|\bigcap_{g \in G} g H g^{-1}\right| \geq 7^{2} \cdot 11
$$

Namely, $|\varphi(G)|=11 \cdot 19$, or 19 , namely $\varphi(G)$ is abelian by Sylow.
However, G acts transitively on X, since for $g H, a H \in X$,

$$
g H=g a^{-1} a H=g a^{-1}(a H)=g_{0}(a H) \quad g_{0}=g a^{-1} .
$$

Therefore, $\varphi(G)$, which is necessarily abelian based on its order, is a transitive subgroup of S_{19}, and so it has order 19. If the order were larger, then there would exist $x=\varphi(a)(1)=\varphi(b)(1)$ and $\varphi(a)(y) \neq \varphi(b)(y)$. Thus, by transitivity, there is $\varphi(c)(x)=y$, then

$$
\varphi(c) \varphi(a) \varphi(c) \varphi(b)(1)=\varphi(c) \varphi(a) \varphi(c)(x)=\varphi(c) \varphi(a)(y)
$$

and

$$
\varphi(c) \varphi(b) \varphi(c) \varphi(a)(1)=\varphi(c) \varphi(b) \varphi(c)(x)=\varphi(c) \varphi(b)(y)
$$

which cannot be equal to $\varphi(b)(y) \neq \varphi(a)(y)$ which contradicts that $\varphi(G)$ is abelian.
Thus, $|\varphi(G)|=19$ so $|\operatorname{ker}(\varphi)|=|H|$ so $\operatorname{ker}(\varphi)=H$ and so H is normal in G. Therefore, because H has a normal Sylow 11-subgroup (since $n_{11} \mid 49$ and $n_{11} \equiv 1 \bmod 11$ in $H, n_{11}=1$)
and since normal Sylow subgroups of normal subgroups are normal in the whole group (see Fall 2011: Problem 5 Claim 3), G has a normal Sylow 11-subgroup.

Now, by the recognizing of semi-direct products theorem, if G is not abelian then it is a semi-direct product of its Sylow subgroups.

However, $\operatorname{Aut}\left(P_{7} P_{11}\right) \cong \operatorname{Aut}\left(P_{7}\right) \times \operatorname{Aut}\left(P_{11}\right)$ since 11 and 7 are coprime. Thus, depending on whether $P_{7} \cong \mathbb{Z}_{7} \times \mathbb{Z}_{7}$ or \mathbb{Z}_{49} we have that

$$
\operatorname{Aut}\left(P_{7}\right) \cong \mathbb{Z}_{49-7}=\mathbb{Z}_{42} \quad \operatorname{Aut}\left(P_{7}\right) \cong G L_{2}\left(\mathbb{F}_{7}\right)
$$

In either case, $\left|\operatorname{Aut}\left(P_{7}\right)\right|=42$ or $\left(7^{2}-1\right)\left(7^{2}-7\right)=48 \cdot 42$ and 19 does not divide either of these.

Similarly, $\operatorname{Aut}\left(P_{11}\right)$ has order $11^{2}-11=110$ or $\left(11^{2}-1\right)\left(11^{2}-11\right)=120 \cdot 110$, and again there are no elements of order 19 to choose from.

Therefore, any homomorphism $\varphi: P_{19} \rightarrow \operatorname{Aut}\left(P_{7} P_{11}\right)$ will be trivial and so the only possible structure for G is as an abelian group.

There are 4 possible abelian structures for G.
\square

Problem 3. Let F be a finite field and G a finite group with $\operatorname{GCD}\{\operatorname{char} F,|G|\}=1$. The group algebra $F[G]$ is an algebra over F with G as an F-basis, elements $\alpha=\sum_{G} a_{g} g$ for $a_{g} \in G$, and multiplication that extends $a g \cdot b h=a b \cdot g h$. Show that any $x \in F[G]$ that is not a zero left divisor (i.e. if $x y=0$ for $y \in F[G]$ then $y=0$) must be invertible in $F[G]$.

Solution. Let $x \in F[G]$ be not a zero left divisor. Then because $F[G]$ is a finite field and G is a finite group, $F[G]$ is a finite dimensional F-algebra and so it is artinian (both left and right artinian) as an F-algebra.

Namely, we can construct a decreasing chain of left ideals

$$
(x) \supset\left(x^{2}\right) \supset \cdots
$$

which must terminate after a finite number of steps. Namely, there exists n so $\left(x^{m}\right)=\left(x^{n}\right)$ for all $m \geq n$.

Thus, $\left(x^{n+1}\right)=\left(x^{n}\right)$ so there exists $y \in F[G]$ such that $x^{n}=y x^{n+1}$. Namely, $(1-y x) x^{n}=$ 0 . Since x is not a left-zero divisor, $(1-y x) x^{n-1}=0$, and recursivley we obtain that $(1-y x)=0$ so $y x=1$. Namely, x has a left inverse in G.

Now, assume x is a right zero-divisor. Then there exists $a \in F[G]$ so $x a=0$. Thus,

$$
(y x) a=1 a=a \quad y(x a)=y(0)=0 \Longrightarrow a=0 .
$$

Therefore, x is not a right-zero divisor, and since $F[G]$ is right artinian we could preform the same reasoning as before on $(x),\left(x^{2}\right), \ldots$ as right ideals to obtain that x has a right inverse z.

Now, since

$$
(y x) z=1 z=z \quad y(x z)=y 1=y
$$

we have that $y=z$ and so y is a 2 -sided inverse for x.

Problem 4. If $p(x)=x^{8}+2 x^{6}+3 x^{4}+2 x^{2}+1 \in \mathbb{Q}[x]$ and if $\mathbb{Q} \subset M \subset \mathbb{C}$ is a splitting field for $p(x)$ over \mathbb{Q}, argue that $\operatorname{Gal}(M / \mathbb{Q})$ is solvable.

Solution. Let $u=x^{2}$ and $h(u)=u^{4}+2 u^{3}+3 u^{2}+2 u+1$. Then the zeros of of $p(x)$ are precisely the square roots of the zeros of $h(u)$. Namely, if L is the splitting field of $h(u)$ over \mathbb{Q} then M / L will certainly be a radical extension so we need only check L / \mathbb{Q}.

Now, $h^{\prime}(u)=4 u^{3}+6 u^{3}+6 u+2$ and $h^{\prime}(u)<0$ for all $u \leq-1 / 3$ and $h^{\prime}(u)>0$ for all $u \geq 0$. However, for any $\alpha \in(-1 / 3,0)$,

$$
h(\alpha)=\alpha^{4}+2 \alpha^{3}+3 \alpha^{2}+2 \alpha+1>-\frac{2}{9}-\frac{2}{3}+1=-\frac{8}{9}+1>0
$$

Therefore, h has no real roots, and namely no rational roots. Thus, h has a pair of complex conjugate roots, $\alpha, \bar{\alpha}, \beta, \bar{\beta}$.

Therefore, L is the splitting field of a separable polynomial over \mathbb{Q} and so L is Galois over \mathbb{Q}.

Since $[L: \mathbb{Q}] \leq 4$!, and $\operatorname{Gal}(L / \mathbb{Q}) \hookrightarrow S_{4}$ which is solvable, we have that $\operatorname{Gal}(L / \mathbb{Q})$ is solvable since subgroups of solvable groups are solvable.

Finally, if $G=\operatorname{Gal}(M / \mathbb{Q})$, then by the fundamental theorem of Galois theory, $H=$ $\operatorname{Gal}(M / L)$ is normal in G and $G / H=\operatorname{Gal}(L / \mathbb{Q})$. Namely, since H is normal in G and is solvable (as we already discussed M / L is a radical extensions) and G / H is solvable, we have that G is solvable.

Problem 5. Let R be a commutative ring with 1 and let $x_{1}, \ldots, x_{n} \in R$ so that $x_{1} y_{1}+\cdots+x_{n} y_{n}=1$ for some $y_{i} \in R$. Let $A=\left\{\left(r_{1}, \ldots, r_{n}\right) \in R^{n} \mid x_{1} r_{1}+\cdots+x_{n} r_{n}=0\right\}$. Show that $R^{n} \cong{ }_{R} A \oplus R$, that A has n generators, and that when $R=F[x]$ for F a field then A_{R} is free of rank $n-1$.

Solution. Let

$$
\begin{aligned}
\varphi: R^{n} & \rightarrow R \\
\left(r_{1}, \ldots, r_{n}\right) & \mapsto x_{1} r_{1}+\cdots+x_{n} r_{n}
\end{aligned}
$$

Then φ is an R-module homomorphism and is surjective since $\left(y_{1}, \ldots, y_{n}\right) \mapsto 1$.
Clearly $\operatorname{ker}(\varphi)=A$, thus we have a short exact sequence

$$
0 \longrightarrow A \longrightarrow R^{n} \longrightarrow R \longrightarrow 0
$$

and since R is a projective R-module (both left and right because R is commutative), this implies that

$$
R^{n} \cong R \oplus A
$$

Since $R=x_{1} R+x_{2} R+\cdots+x_{n} R, R^{n}=\left(x_{1} R+x_{2} R+\cdots+x_{n} R\right)^{n}$ and since A is a submodule of R^{n}, A has less than or equal to n generators.

However, because $R^{n} / A \cong R$ is cyclic, A has at least n generators.
Thus, A has exactly n generators.
When $R=F[x]$, then R is a PID and so because A is finitely generated, by the structure theorem, A is a direct sum of its free and torsion parts.

Namely, we have that $A \cong R^{a} \oplus T(A)$ where $T(A)$ is the torsion part of A.
Now, since

$$
R^{n} \cong R \oplus R^{a} \oplus T(A) \cong R^{a+1} \oplus T(A)
$$

it must be that $a+1=n$ so $a=n-1$ and $T(A)=0$.
Thus, A is a free R-module of rank $n-1$.

Problem 6. For p a prime let F_{p} be the field of p elements and K an extension field of F_{p} of dimension 72 .
(a) Describe the possible structures of $\operatorname{Gal}\left(K / F_{p}\right)$.
(b) If $g(x) \in F_{p}[x]$ is irreduicble of degree 72 , argue that K is a splitting field of $g(x)$ over F_{p}.
(c) Which integers $d>0$ have irreducibles in $F_{p}[x]$ of degree d that split in K ?

Solution.

(a) Since K has $q=p^{72}$ elements, K is the splitting field of $x^{q}-x$, which is separable over F_{p}. Thus, K / F_{p} is Galois.
Since Galois extensions over finite fields are always cyclic extensions, $\operatorname{Gal}\left(K / F_{p}\right) \cong \mathbb{Z}_{72}$.
(b) If $g(x) \in F_{p}[x]$ is irreduicble of degree 72 , and α is a root of $g(x)$, then $\left[F_{p}(\alpha): F_{p}\right]=$ $72=\left[K: F_{p}\right]$. Therefore, since finite fields of the same order are isomorphic, $K=F_{p}(\alpha)$ and so $\alpha \in K$.
(c) If $d \mid 72$ then by the same reasoning, any polynomial of degree d will split completely in K.

