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Problem 1. Let I be an ideal of R = C[z, ..., x,]. Show that dim¢ R/ is finite if and
only if I is contained in only finitely many maximal ideals of R.

Solution. Assume R/ is a finite dimensional algebra over C. Then R/I is artinian,
since proper ideals are sub-algebras of strictly smaller degree.

Thus, if S = {M; M, --- My, | M; maximal ideal of R/I} is the set of finite products of
maximal ideals in R/I. S is nonempty so S contains a minimal element in R/I, My Ms - - - My.
Let N be some other maximal ideal of R/I. Then NMj -+ My, C My --- My so

NM-- My =M, ---M; CN.

However, N is maximal and so prime, thus M; C N for some i. However, by maximality,
M; = N.

Thus, these are the only maximal ideals of R/I. By the correspondence theorem, there
is a 1-to-1 correspondence between maximal ideals of R containing I and maximal ideals of

R/I.

Since R/I has only finitely many maximal ideals, there are only finitely many maximal
ideals of R containing [.

Assume [ is contained in only finitely many maximal ideals of R. Note that R is
Noetherian by the Hilbert Basis theorem, and so all ideals are finitely generated.

Since I is contained in only finitely many maximal ideals, V(1) contains only finitely
many points. Namely, by Nullstellensatza,

VI ﬂ M, is a finite intersection

aeCn
where M, is the maximal ideal (by Nullstellensatz) of the form (x; — ay,...,x, — a,) for
a=(ay,...,a,).
Thus, VI = N, M,, where I C M,, for all 7.

Since /T is finitely generated, /I = (fi, fa, ..., fx), and for each f; there exists m; so
fit el

Let m = lem{m;}. Then

IcVI=M,
i=1
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and

I>(WDHm= (ﬁ M)m = ﬁM;j.

Thus, the Chinese remainder theorem, since M,, are pairwise coprime, M;" are all
pairwise coprime (since if M + Mg is contained in some maximal ideal M, then M ‘contains
both M;? and M and so must contain both M,, and M,; which forces M = R).

Therefore,

R/VI" = R/, M = R/ M = [] R/M.

Claim 1. If F is a field and if L = F[zy,...,x,]/M is a field, then L is a finite
field extension of F'.

Proof. We proceed by induction on n.

Basecase: let L = F'aq] be a field. Then for f(a;) € L there exists g(a;) € L
such that f(a1)g(a;) =1 € L and so a; satisfies h(z) = f(z)g(z) — 1. Namely,
ay is algebraic over F' and so L is a finite field extension of F.

Assume L = Flay, ..., ax] is a finite field extension of F' for all £ < n.

Then let L = Flay, ..., a][an+1]. Since L is a field, by the same reasoning
as the basecase, L is algebraic over Flay,...,a,]. However, by the inductive
hypothesis, Flai, ..., a,] is a finite field extension of F' and so

[L:F]=[L:Flay,....,a,]][Flai,...,a,) : F] < oc.

¥

Thus, by the claim, R/M,, is a finite field extension of C and so namely, it is finite
dimensional over C.

Then, R/M;" is also finite dimensional since M C M,, so we can inject R/M" < R /M,
which is finite dimensional, so R/M;" is finite dimensional, and so R/ VI is finite dimensional
since it is a product of finite dimensional algebras.

Finally,

R/I= (RINT")/(INT")

is a quotient of a finite dimensional algebra, and so R/I is a finite dimensional C-algebra.

Y
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Problem 2. . If G is a group with |G| = 7% - 11? - 19, show that G must be abelian and
describe the possible structures of G.

Solution. By Sylow, n; = 1 mod 7 and n;|11% - 19. Since 11> =2 mod 7, 11-19 = 6
mod 7, 112-19=3 mod 7, ny = 1.

Thus, G has a normal Sylow 7-subgroup Ps.
Thus, H = P;P;; is a subgroup of G where P;; is a Sylow 11-subgroup of G.
Now, let X = G/H the set of let cosets of H. Then |X| = 19.
Let G act on X by left multplication. Then this defines a homomorphism
0 : G — Sx| = S
a—o0,: X =X o.(gH) = agH

Note that ¢ is not an embedding since 11? does not divide 19!. Therefore, 11 divides
| ker(p)| and so there exists an element = € ker(y) of order 11.

Now, if ¢(a) = Id, then agH = gH for all g € G soa € gHg ! for all g € G.

Namely, ker(p) = ﬂ gHg™'. Note also that P; is normal in G and so because gPrg~! =
geG

P, C gHg ! for all g.

Therefore,

| ker(o)| = |() gHg™'| > 7*-11.

geqG

Namely, |¢(G)| = 11-19, or 19, namely ¢(G) is abelian by Sylow.
However, G acts transitively on X, since for gH,aH € X,

gH = ga 'aH = ga_l(aH) = go(aH) go = ga L.

Therefore, ¢(G), which is necessarily abelian based on its order, is a transitive subgroup of Sy,
and so it has order 19. If the order were larger, then there would exist z = ¢(a)(1) = ¢(b)(1)
and ¢(a)(y) # ¢(b)(y). Thus, by transitivity, there is ¢(c¢)(z) =y, then

p(e)p(a)p(c)pd)(1) = p(c)p(a)p(c)(z) = p(c)p(a)(y)

and

p(c)p(b)p(c)p(a)(1) = p(e)p(b)p(c)(z) = (c)p(b)(y)
which cannot be equal to ¢(b)(y) # ¢(a)(y) which contradicts that ¢(G) is abelian.

Thus, |p(G)| = 19 so | ker(p)| = |H| so ker(p) = H and so H is normal in G. Therefore,
because H has a normal Sylow 11-subgroup (since 111|149 and ny; =1 mod 11 in H, ny; = 1)

3
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and since normal Sylow subgroups of normal subgroups are normal in the whole group (see
Fall 2011: Problem 5 Claim 3), G has a normal Sylow 11-subgroup.

Now, by the recognizing of semi-direct products theorem, if GG is not abelian then it is a
semi-direct product of its Sylow subgroups.

However, Aut(P;Py;) = Aut(P;) X Aut(Py;) since 11 and 7 are coprime. Thus, depending
on whether P; = Z, X Z, or Z49 we have that

Aut(P7) = Z49,7 = Z42 Aut(P7) = GLQ(F7)
In either case, [Aut(Pr)| =42 or (7% — 1)(7* — 7) = 48 - 42 and 19 does not divide either of

these.

Similarly, Aut(P;;) has order 112 — 11 = 110 or (11? — 1)(11? — 11) = 120 - 110, and
again there are no elements of order 19 to choose from.

Therefore, any homomorphism ¢ : P9 — Aut(P;Py;) will be trivial and so the only
possible structure for GG is as an abelian group.

There are 4 possible abelian structures for G.

Z72 X Z112 X Zlg

Z7 X Z7 X le X Zlg

Z72 X Ziq1 X Zq1 X Z19

Z7 X Z7 X ZH X ZH X Zlg
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Problem 3. Let F be a finite field and G a finite group with GCD{charF, |G|} = 1.
The group algebra F[G] is an algebra over F' with G as an F-basis, elements a = Y5 a,g
for a, € G, and multiplication that extends ag - bh = ab - gh. Show that any = € F[G]

that is not a zero left divisor (i.e. if zy = 0 for y € F[G] then y = 0) must be invertible
in F[G].

Solution. Let z € F[G] be not a zero left divisor. Then because F[G] is a finite field and
G is a finite group, F[G] is a finite dimensional F-algebra and so it is artinian (both left and
right artinian) as an F-algebra.

Namely, we can construct a decreasing chain of left ideals
(@) D (&%) 2>
which must terminate after a finite number of steps. Namely, there exists n so (z™) = (z")

for all m > n.

Thus, (z"*1) = (2") so there exists y € F|[G] such that 2" = y2™*1. Namely, (1—yz)a™ =
0. Since z is not a left-zero divisor, (1 — yz)z"! = 0, and recursivley we obtain that
(1 —yx) = 0so yr = 1. Namely, x has a left inverse in G.

Now, assume z is a right zero-divisor. Then there exists a € F|[G] so za = 0. Thus,

(yr)a=1la=a y(za) =y(0) =0 = a=0.

Therefore, x is not a right-zero divisor, and since F[G] is right artinian we could preform
the same reasoning as before on (), (x?), ... as right ideals to obtain that x has a right inverse
z.

Now, since
(yr)z =1z =z ylxz) =yl =y

we have that y = z and so y is a 2-sided inverse for x. ¥
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Problem 4. If p(x) = 28 + 22° 4+ 321 4+ 22? + 1 € Q[z] and if Q C M C C is a splitting
field for p(x) over Q, argue that Gal(M/Q) is solvable.

Solution. Let u = 2? and h(u) = u* + 2u® 4+ 3u® + 2u + 1. Then the zeros of of p(z) are
precisely the square roots of the zeros of h(u). Namely, if L is the splitting field of h(u) over
Q then M /L will certainly be a radical extension so we need only check L/Q.

Now, h/(u) = 4u? + 6u® + 6u + 2 and h/(u) < 0 for all w < —1/3 and A’ (u) > 0 for all
u > 0. However, for any o € (—1/3,0),

2 2 8
h(a):oz4—l—20z3+30z2—|—20z+1>—§—§+1:—§+1>0-

Therefore, h has no real roots, and namely no rational roots. Thus, h has a pair of
complex conjugate roots, o, @, 3, (.

Therefore, L is the splitting field of a separable polynomial over Q and so L is Galois
over Q.

Since [L : Q] < 4!, and Gal(L/Q) < Sy which is solvable, we have that Gal(L/Q) is
solvable since subgroups of solvable groups are solvable.

Finally, if G = Gal(M/Q), then by the fundamental theorem of Galois theory, H =
Gal(M/L) is normal in G and G/H = Gal(L/Q). Namely, since H is normal in G and is
solvable (as we already discussed M/L is a radical extensions) and G/H is solvable, we have
that G is solvable. Y
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Problem 5. Let R be a commutative ring with 1 and let xy,...,x, € R so that
x1y1+ -+ 2oy, = 1 for some y; € R. Let A= {(ry,...,7n) € R"|zyr1 + -+ -+ 2,1, = 0}.
Show that R" = A @ R, that A has n generators, and that when R = F[x] for I a field
then Ap is free of rank n — 1.

Solution. Let
¢:R"— R

(riy ey Tn) = 171 + -+ Ty

Then ¢ is an R-module homomorphism and is surjective since (yi, ..., yn) — 1.

Clearly ker(p) = A, thus we have a short exact sequence

0 A R R 0

and since R is a projective R-module (both left and right because R is commutative),

this implies that
R"=Z R® A.

Since R = 1R+ xR+ -+ x,R, R" = (11nR+ 2R+ -+ + 2, R)" and since A is a
submodule of R™, A has less than or equal to n generators.
However, because R"/A = R is cyclic, A has at least n generators.

Thus, A has exactly n generators.

When R = F[z], then R is a PID and so because A is finitely generated, by the structure
theorem, A is a direct sum of its free and torsion parts.

Namely, we have that A = R* @ T(A) where T'(A) is the torsion part of A.

Now, since

RP2ROR ®T(A) =R T(A)
it must be that a +1 =nsoa=n—1and T(A) = 0.
Thus, A is a free R-module of rank n — 1. b
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Problem 6. For p a prime let F}, be the field of p elements and K an extension field of
F, of dimension 72.

(a) Describe the possible structures of Gal(K/F,).

(b) If g(z) € F,[z] is irreduicble of degree 72, argue that K is a splitting field of g(x)
over F,.

(c) Which integers d > 0 have irreducibles in F},[x] of degree d that split in K7

Solution.

(a) Since K has ¢ = p™ elements, K is the splitting field of 29 — z,which is separable over
F,. Thus, K/F, is Galois.

Since Galois extensions over finite fields are always cyclic extensions, Gal(K/F),) = Zrs.
(b) If g(z) € Fp[z] is irreduicble of degree 72, and « is a root of g(x), then [F,(a) : F)] =

72 = [K : F},]. Therefore, since finite fields of the same order are isomorphic, K = F,(«a)
and so a € K.

(c) If d|72 then by the same reasoning, any polynomial of degree d will split completely in
K.



