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Problem 1. Use Sylow’s theorems directly to find, up to isomorphism, all possible
structures of groups of order 5 · 7 · 23.

Solution. Let G be a group of order 5 · 7 · 23.
By Sylow, n23 ≡ 1 mod 23 and n23|35, so n23 = 1.
Similarly, n7 ≡ 1 mod 7 and n7|5 · 23. Since 5 · 23 = 115 ≡ 3 mod 7, we have that

n7 = 1.
Abelian If G also has a normal Sylow 5 subgroup, then G is abelian and isomorphic to

Z5 × Z7 × Z23.
If G does not have a normal Sylow 5-subgroup, then by the recognizing semi-direct

products theorem, G is isomorphic to a semi direct product of its Sylow subgroups.
ϕ : P5 → Aut(P7P23) Let P5, P7, P23 be Sylow 5, 7, 23-subgroups of G respectively.

Then if we have a homomorphism, ϕ : P5 → Aut(P7P23) ∼= Aut(P7)×Aut(P23) ∼= Z6×Z22
(since 7 and 23 are coprime), we have that ϕ must be trivial since neither group has any
elements of order 5.

ϕ : P5P7 → Aut(P23) If ϕ : P5P7 → Aut(P23) ∼= Z22 is a homomorphism, then ϕ must
be again trivial since Z22 has no elements of order 5 or order 7.

ϕ : P5P23 → Aut(P7) if ϕ : P5P23 → Aut(P7) ∼= Z6 is a homomorphism, then ϕ is again
trivial since there are no elements of order 5 or order 23 in Z6.

Thus, there is only one group of order 5 · 7 · 23,

Z5 × Z7 × Z23
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Problem 2. Let A,B,C be finitely generated F [x] = R modules, for F a field, with C
torsion free. Show that A⊗R C ∼= B ⊗R C implies that A ∼= B. Show by example that
this conclusion can fail when C is not torsion free.

Solution. Because F is a field, F [x] is a PID, so because A,B,C are finitely generated, by
the structure theorem, we can write each as a direct sum of its free and torsion part.

Namely, because C is torsion free, C is a free module so C ∼= Rn for some n.
Thus,

A⊗R C ∼= A⊗R R
n ∼= An ∼= B ⊗R C ∼= Bn.

Since An ∼= Bn implies that the free parts and torsion parts of An and Bn are both
isomorphic. Namely, if A ∼= Ra ⊕ T (A) and B ∼= Rb ⊕ T (B) with T (A) and T (B) the torsion
parts of A and B respectively.

Then there exists a chain of nonzero ideals (a1) ⊂ (a2) ⊂ · · · ⊂ (ak) ⊂ A and (b1) ⊂
(b2) ⊂ · · · ⊂ (bl) ⊂ B with

T (A) ∼=
k⊕

i=1
R/(ai) T (B) ∼=

l⊕
j=1

R/(bi).

Now, since An ∼= Bn, then

Ran ∼= Rbn =⇒ a = b

and
(T (A))n ∼= (R/(a1))n ⊕ · · · ⊕ (R/(ak))n ∼= (R/(b1))n ⊕ · · · ⊕ (R/(bl))n.

Therefore, each component, R/(ai) of T (A) must be represented in the decomposition
for T (B) so T (A) ∼= T (B).

Thus, A ∼= B.
Now, assume C has nontrivial torsion part. Let A = B ⊕ Ann(C). Then

A⊗R C = (B ⊕ Ann(C))⊗R C ∼= (B ⊗R C)⊕ (Ann(C)⊗R C) ∼= B ⊗R C

since Ann(C) ⊂ R and so each element transfers over and kills C. However, since Ann(C) is
nonzero, A 6∼= B. �
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Problem 3. Working in the polynomial ring C[x, y], show that some power of (x +
y)(x2 + y4 − 2) is in (x3 + y3, y3 + xy).

Solution. By Nullstellensatz, if I = (x3 + y3, y3 + xy), and g(x, y) is satisfied g(a, b) = 0
for all (a, b) ∈ V (I), then g(x, y) ∈

√
I so there exists a natural number m such that gm ∈ I.

Thus, we compute V (I).
If x3 +y2 = 0 and y3 +xy = 0 simultaneously, then x3y+y3−y3−xy = 0 so x3y−xy = 0

so xy(x2 − 1) = 0. Thus, we have x = 0, 1,−1 or y = 0. This gives the following points
(0, 0), (1, i), (1,−i), (−1, 1), (−1,−1) ∈ V (x3 + y2, y3 + xy).

Since (x+ y)(x2 + y4 − 2) (0, 0), (−1, 1) immediately satisfy (x+ y), we need only check
(x2 + y4 − 2).

Since 12 + (i)4 − 2 = 1 + 1− 2 = 0, 12 + (−i)4 − 2 = 0, (−1)2 + (−1)4 − 2 = 2− 2 = 0,
we have by Nullstellensatz that (x + y)(x2 + y4 − 2) is satisfied by every point (a, b) ∈
V (x3 + y2, y3 + xy), so (x + y)(x2 + y4 − 2) ∈

√
I and there exists an integer m such that

((x+ y)(x2 + y4 − 2))m ∈ (x3 + y2, y3 + xy). �
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Problem 4. For integers n,m > 1, let A ⊂ Mn(Zm) be a subring with the property
that if x ∈ A with x2 = 0 then x = 0. Show that A is commutative. Is the converse true?

Solution. First, if x2 = 0 =⇒ x = 0, then we note that if xn = 0 =⇒ x = 0 for all n.
To see this, we simply note that for any positive integer n, there exists natural numbers

s and r < 2s such that n = 2s + r. Thus,

xn = 0 =⇒ x2s+rx2s−r = x2s+1 = (x2s)2 = 0.

Therefore, x2s = (x2s−1)2 = 0 and so on recursively until we obtain that x = 0.
Namely, A is a finite ring with no nilpotent elements.
Let x ∈ J(A). Then because J(A) is right quasi-regular, 1− x is a unit in A.
Then, we construct a decreasing chain of ideals

(x) ⊃ (x2) ⊃ · · ·

which must terminate for some n. Namely, (xn) = (xn+1) so xn = rxn+1 for some r ∈ A.
However, rx ∈ J(A) and so 1− rx is a unit. Therefore,

xn = rxn+1 =⇒ xn(1− rx) = 0 =⇒ xn = 0.

Namely, x is nilpotent. Since R has no nilpotent elements, J(A) = 0.
Thus, by Artin Wedderburn,

A ∼= Mn1(D1)⊕ · · · ⊕Mnk
(Dk)

where the Dk are division rings.
Now, A contains no nilpotent elements, however matrix rings contain nilpotent elements

over any division ring, since 
0 0 · · · 0 1
0 0 · · · 0 0

... . . . ...
0 0 · · · 0 0


is nilpotent of degree 2 over any division ring where 1 6= 0.

Namely, ni = 1 for all i.
Finally, because the Di are finite, by Wedderburn, the Di are all fields.
Thus, A is a finite direct sum (isomorphic to a finite direct product) of fields and is

therefore commutative.
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Let

A =





a 0 0 · · · 0 Zm

0 a 0 · · · 0 0
0 0 a · · · 0 0

... . . . ...
0 0 0 · · · a 0
0 0 0 · · · 0 a


| a ∈ Zm


Then A is indeed a subring, it is commutative since every element of A is of the form

aX + bI where

X =


0 0 · · · 0 1
0 0 · · · 0 0

... . . . ...
0 0 · · · 0 0

 I = In×n.

However, X2 = 0 and X 6= 0. �
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Problem 5. Let F be the splitting field of f(x) = x6 − 2 over Q. Show that Gal(F/Q)
is isomorphic to the dihedral group of order 12.

Solution. First, f is irreducible by Eisenstein with p = 2. 2 divides every coefficient of f
except the leading coefficient and 22 does not divide the constant term.

Therefore, since f is irreducible over Q, it is separable. Thus, F is the splitting field of a
separable polynomial over Q and so F/Q is a Galois extension.

Next, let ξ be a 6th root of unity. Then ϕ(6) = ϕ(2)ϕ(3) = 1 · 2 = 2 so there are 2
primitive roots of unity.

Namely, F = Q(ξ, 6
√

2) and since ξ /∈ Q( 6
√

2) because ξ is a complex number and
Q( 6
√

2) ⊂ R, we have that

[Q(ξ, 6
√

2) : Q( 6
√

2)] = [Q(ξ) : Q] = 2.

Therefore,
[F : Q] = [F : Q( 6

√
2)][Q( 6

√
2) : Q] = 2 · 6 = 12

Let G = Gal(F/Q), then |G| = 12.
Now, let σ ∈ G be defined by σ( 6

√
2) = 6

√
2ξ, σ(ξ) = ξ, and τ ∈ G be defined by

τ( 6
√

2ξ) = 6
√

2ξ−1 =.
Then, σ has order 6 since ξ is a primitive 6th root of unity, and τ has order 2.
Now, note that σ( 6

√
2ξj−1) = 6

√
2ξj so σ−1( 6

√
2ξj) = 6

√
2ξj−1

Finally,
στ( 6
√

2ξj) = σ( 6
√

2ξ−j) = 6
√

2ξ−j+1

and

τσ−1( 6
√

2ξj) = τ( 6
√

2ξj−1) = 6
√

2ξ−j+1.

Therefore, G is described by

G ∼= 〈τ, σ | τ 2 = σ6 = 1, στ = τσ−1〉 ∼= D12.

�
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Problem 6. Given that all groups of order 12 are solvable show that any group of order
22 · 3 · 72 is solvable.

Solution. Let G be a group of order 22 · 3 · 72. By Sylow, n7 ≡ 1 mod 7 and n7|12. Thus,
n7 = 1 so G has a normal Sylow 7 subgroup.

Let P7 be the Sylow 7-subgroup of G. Then |P7| = 72, and so P7 is abelian and namely
solvable. Note that groups of order p2 Q are abelian since they have nontrivial centers, and
the quotient of their centers Q/Z(Q) is cyclic so Q must be abelian.

Therefore, G has a normal subgroup which is solvable.
Finally, G/P7 has order 12, which we are given implies that G/P7 is a solvable group.
Therefore, G has a normal subgroup P7 which is solvable and G/P7 is solvable, so G

itself is solvable. �
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