Kayla Orlinsky
 Algebra Exam Fall 2012

Problem 1. Use Sylow's theorems directly to find, up to isomorphism, all possible structures of groups of order $5 \cdot 7 \cdot 23$.

Solution. Let G be a group of order $5 \cdot 7 \cdot 23$.
By Sylow, $n_{23} \equiv 1 \bmod 23$ and $n_{23} \mid 35$, so $n_{23}=1$.
Similarly, $n_{7} \equiv 1 \bmod 7$ and $n_{7} \mid 5 \cdot 23$. Since $5 \cdot 23=115 \equiv 3 \bmod 7$, we have that $n_{7}=1$.

Abelian If G also has a normal Sylow 5 subgroup, then G is abelian and isomorphic to $\mathbb{Z}_{5} \times \mathbb{Z}_{7} \times \mathbb{Z}_{23}$.

If G does not have a normal Sylow 5-subgroup, then by the recognizing semi-direct products theorem, G is isomorphic to a semi direct product of its Sylow subgroups.
$\varphi: P_{5} \rightarrow \operatorname{Aut}\left(P_{7} P_{23}\right)$ Let P_{5}, P_{7}, P_{23} be Sylow $5,7,23$-subgroups of G respectively.
Then if we have a homomorphism, $\varphi: P_{5} \rightarrow \operatorname{Aut}\left(P_{7} P_{23}\right) \cong \operatorname{Aut}\left(P_{7}\right) \times \operatorname{Aut}\left(P_{23}\right) \cong \mathbb{Z}_{6} \times \mathbb{Z}_{22}$ (since 7 and 23 are coprime), we have that φ must be trivial since neither group has any elements of order 5.
$\varphi: P_{5} P_{7} \rightarrow \operatorname{Aut}\left(P_{23}\right)$ If $\varphi: P_{5} P_{7} \rightarrow \operatorname{Aut}\left(P_{23}\right) \cong \mathbb{Z}_{22}$ is a homomorphism, then φ must be again trivial since \mathbb{Z}_{22} has no elements of order 5 or order 7 .
$\varphi: P_{5} P_{23} \rightarrow \operatorname{Aut}\left(P_{7}\right)$ if $\varphi: P_{5} P_{23} \rightarrow \operatorname{Aut}\left(P_{7}\right) \cong \mathbb{Z}_{6}$ is a homomorphism, then φ is again trivial since there are no elements of order 5 or order 23 in \mathbb{Z}_{6}.

Thus, there is only one group of order $5 \cdot 7 \cdot 23$,

$$
\mathbb{Z}_{5} \times \mathbb{Z}_{7} \times \mathbb{Z}_{23}
$$

Problem 2. Let A, B, C be finitely generated $F[x]=R$ modules, for F a field, with C torsion free. Show that $A \otimes_{R} C \cong B \otimes_{R} C$ implies that $A \cong B$. Show by example that this conclusion can fail when C is not torsion free.

Solution. Because F is a field, $F[x]$ is a PID, so because A, B, C are finitely generated, by the structure theorem, we can write each as a direct sum of its free and torsion part.

Namely, because C is torsion free, C is a free module so $C \cong R^{n}$ for some n.
Thus,

$$
A \otimes_{R} C \cong A \otimes_{R} R^{n} \cong A^{n} \cong B \otimes_{R} C \cong B^{n}
$$

Since $A^{n} \cong B^{n}$ implies that the free parts and torsion parts of A^{n} and B^{n} are both isomorphic. Namely, if $A \cong R^{a} \oplus T(A)$ and $B \cong R^{b} \oplus T(B)$ with $T(A)$ and $T(B)$ the torsion parts of A and B respectively.

Then there exists a chain of nonzero ideals $\left(a_{1}\right) \subset\left(a_{2}\right) \subset \cdots \subset\left(a_{k}\right) \subset A$ and $\left(b_{1}\right) \subset$ $\left(b_{2}\right) \subset \cdots \subset\left(b_{l}\right) \subset B$ with

$$
T(A) \cong \bigoplus_{i=1}^{k} R /\left(a_{i}\right) \quad T(B) \cong \bigoplus_{j=1}^{l} R /\left(b_{i}\right)
$$

Now, since $A^{n} \cong B^{n}$, then

$$
R^{a n} \cong R^{b n} \Longrightarrow a=b
$$

and

$$
(T(A))^{n} \cong\left(R /\left(a_{1}\right)\right)^{n} \oplus \cdots \oplus\left(R /\left(a_{k}\right)\right)^{n} \cong\left(R /\left(b_{1}\right)\right)^{n} \oplus \cdots \oplus\left(R /\left(b_{l}\right)\right)^{n} .
$$

Therefore, each component, $R /\left(a_{i}\right)$ of $T(A)$ must be represented in the decomposition for $T(B)$ so $T(A) \cong T(B)$.

Thus, $A \cong B$.
Now, assume C has nontrivial torsion part. Let $A=B \oplus \operatorname{Ann}(C)$. Then

$$
A \otimes_{R} C=(B \oplus \operatorname{Ann}(C)) \otimes_{R} C \cong\left(B \otimes_{R} C\right) \oplus\left(\operatorname{Ann}(C) \otimes_{R} C\right) \cong B \otimes_{R} C
$$

since $\operatorname{Ann}(C) \subset R$ and so each element transfers over and kills C. However, since $\operatorname{Ann}(C)$ is nonzero, $A \neq B$.

Problem 3. Working in the polynomial ring $\mathbb{C}[x, y]$, show that some power of $(x+$ $y)\left(x^{2}+y^{4}-2\right)$ is in $\left(x^{3}+y^{3}, y^{3}+x y\right)$.

Solution. By Nullstellensatz, if $I=\left(x^{3}+y^{3}, y^{3}+x y\right)$, and $g(x, y)$ is satisfied $g(a, b)=0$ for all $(a, b) \in V(I)$, then $g(x, y) \in \sqrt{I}$ so there exists a natural number m such that $g^{m} \in I$.

Thus, we compute $V(I)$.
If $x^{3}+y^{2}=0$ and $y^{3}+x y=0$ simultaneously, then $x^{3} y+y^{3}-y^{3}-x y=0$ so $x^{3} y-x y=0$ so $x y\left(x^{2}-1\right)=0$. Thus, we have $x=0,1,-1$ or $y=0$. This gives the following points $(0,0),(1, i),(1,-i),(-1,1),(-1,-1) \in V\left(x^{3}+y^{2}, y^{3}+x y\right)$.

Since $(x+y)\left(x^{2}+y^{4}-2\right)(0,0),(-1,1)$ immediately satisfy $(x+y)$, we need only check $\left(x^{2}+y^{4}-2\right)$.

Since $1^{2}+(i)^{4}-2=1+1-2=0,1^{2}+(-i)^{4}-2=0,(-1)^{2}+(-1)^{4}-2=2-2=0$, we have by Nullstellensatz that $(x+y)\left(x^{2}+y^{4}-2\right)$ is satisfied by every point $(a, b) \in$ $V\left(x^{3}+y^{2}, y^{3}+x y\right)$, so $(x+y)\left(x^{2}+y^{4}-2\right) \in \sqrt{I}$ and there exists an integer m such that $\left((x+y)\left(x^{2}+y^{4}-2\right)\right)^{m} \in\left(x^{3}+y^{2}, y^{3}+x y\right)$.

Problem 4. For integers $n, m>1$, let $A \subset M_{n}\left(\mathbb{Z}_{m}\right)$ be a subring with the property that if $x \in A$ with $x^{2}=0$ then $x=0$. Show that A is commutative. Is the converse true?

Solution. First, if $x^{2}=0 \Longrightarrow x=0$, then we note that if $x^{n}=0 \Longrightarrow x=0$ for all n.
To see this, we simply note that for any positive integer n, there exists natural numbers s and $r<2^{s}$ such that $n=2^{s}+r$. Thus,

$$
x^{n}=0 \Longrightarrow x^{2^{s}+r} x^{2^{s}-r}=x^{2^{s+1}}=\left(x^{2^{s}}\right)^{2}=0 .
$$

Therefore, $x^{2^{s}}=\left(x^{2^{s-1}}\right)^{2}=0$ and so on recursively until we obtain that $x=0$.
Namely, A is a finite ring with no nilpotent elements.
Let $x \in J(A)$. Then because $J(A)$ is right quasi-regular, $1-x$ is a unit in A.
Then, we construct a decreasing chain of ideals

$$
(x) \supset\left(x^{2}\right) \supset \cdots
$$

which must terminate for some n. Namely, $\left(x^{n}\right)=\left(x^{n+1}\right)$ so $x^{n}=r x^{n+1}$ for some $r \in A$. However, $r x \in J(A)$ and so $1-r x$ is a unit. Therefore,

$$
x^{n}=r x^{n+1} \Longrightarrow x^{n}(1-r x)=0 \Longrightarrow x^{n}=0 .
$$

Namely, x is nilpotent. Since R has no nilpotent elements, $J(A)=0$.
Thus, by Artin Wedderburn,

$$
A \cong M_{n_{1}}\left(D_{1}\right) \oplus \cdots \oplus M_{n_{k}}\left(D_{k}\right)
$$

where the D_{k} are division rings.
Now, A contains no nilpotent elements, however matrix rings contain nilpotent elements over any division ring, since

$$
\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & 1 \\
0 & 0 & \cdots & 0 & 0 \\
& \vdots & \ddots & \vdots & \\
0 & 0 & \cdots & 0 & 0
\end{array}\right]
$$

is nilpotent of degree 2 over any division ring where $1 \neq 0$.
Namely, $n_{i}=1$ for all i.
Finally, because the D_{i} are finite, by Wedderburn, the D_{i} are all fields.
Thus, A is a finite direct sum (isomorphic to a finite direct product) of fields and is therefore commutative.

Let

$$
A=\left\{\left.\left[\begin{array}{cccccc}
a & 0 & 0 & \cdots & 0 & \mathbb{Z}_{m} \\
0 & a & 0 & \cdots & 0 & 0 \\
0 & 0 & a & \cdots & 0 & 0 \\
& \vdots & & \ddots & \vdots & \\
0 & 0 & 0 & \cdots & a & 0 \\
0 & 0 & 0 & \cdots & 0 & a
\end{array}\right] \right\rvert\, a \in \mathbb{Z}_{m}\right\}
$$

Then A is indeed a subring, it is commutative since every element of A is of the form $a X+b I$ where

$$
X=\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & 1 \\
0 & 0 & \cdots & 0 & 0 \\
& \vdots & \ddots & \vdots & \\
0 & 0 & \cdots & 0 & 0
\end{array}\right] \quad I=I_{n \times n}
$$

However, $X^{2}=0$ and $X \neq 0$.

Problem 5. Let F be the splitting field of $f(x)=x^{6}-2$ over \mathbb{Q}. Show that $\operatorname{Gal}(F / \mathbb{Q})$ is isomorphic to the dihedral group of order 12.

Solution. First, f is irreducible by Eisenstein with $p=2.2$ divides every coefficient of f except the leading coefficient and 2^{2} does not divide the constant term.

Therefore, since f is irreducible over \mathbb{Q}, it is separable. Thus, F is the splitting field of a separable polynomial over \mathbb{Q} and so F / \mathbb{Q} is a Galois extension.

Next, let ξ be a $6^{\text {th }}$ root of unity. Then $\varphi(6)=\varphi(2) \varphi(3)=1 \cdot 2=2$ so there are 2 primitive roots of unity.

Namely, $F=\mathbb{Q}(\xi, \sqrt[6]{2})$ and since $\xi \notin \mathbb{Q}(\sqrt[6]{2})$ because ξ is a complex number and $\mathbb{Q}(\sqrt[6]{2}) \subset \mathbb{R}$, we have that

$$
[\mathbb{Q}(\xi, \sqrt[6]{2}): \mathbb{Q}(\sqrt[6]{2})]=[\mathbb{Q}(\xi): \mathbb{Q}]=2
$$

Therefore,

$$
[F: \mathbb{Q}]=[F: \mathbb{Q}(\sqrt[6]{2})][\mathbb{Q}(\sqrt[6]{2}): \mathbb{Q}]=2 \cdot 6=12
$$

Let $G=\operatorname{Gal}(F / \mathbb{Q})$, then $|G|=12$.
Now, let $\sigma \in G$ be defined by $\sigma(\sqrt[6]{2})=\sqrt[6]{2} \xi, \sigma(\xi)=\xi$, and $\tau \in G$ be defined by $\tau(\sqrt[6]{2} \xi)=\sqrt[6]{2} \xi^{-1}=$.

Then, σ has order 6 since ξ is a primitive $6^{\text {th }}$ root of unity, and τ has order 2 .
Now, note that $\sigma\left(\sqrt[6]{2} \xi^{j-1}\right)=\sqrt[6]{2} \xi^{j}$ so $\sigma^{-1}\left(\sqrt[6]{2} \xi^{j}\right)=\sqrt[6]{2} \xi^{j-1}$
Finally,

$$
\sigma \tau\left(\sqrt[6]{2} \xi^{j}\right)=\sigma\left(\sqrt[6]{2} \xi^{-j}\right)=\sqrt[6]{2} \xi^{-j+1}
$$

and

$$
\tau \sigma^{-1}\left(\sqrt[6]{2} \xi^{j}\right)=\tau\left(\sqrt[6]{2} \xi^{j-1}\right)=\sqrt[6]{2} \xi^{-j+1}
$$

Therefore, G is described by

$$
G \cong\left\langle\tau, \sigma \mid \tau^{2}=\sigma^{6}=1, \sigma \tau=\tau \sigma^{-1}\right\rangle \cong D_{12}
$$

Problem 6. Given that all groups of order 12 are solvable show that any group of order $2^{2} \cdot 3 \cdot 7^{2}$ is solvable.

Solution. Let G be a group of order $2^{2} \cdot 3 \cdot 7^{2}$. By Sylow, $n_{7} \equiv 1 \bmod 7$ and $n_{7} \mid 12$. Thus, $n_{7}=1$ so G has a normal Sylow 7 subgroup.

Let P_{7} be the Sylow 7-subgroup of G. Then $\left|P_{7}\right|=7^{2}$, and so P_{7} is abelian and namely solvable. Note that groups of order $p^{2} Q$ are abelian since they have nontrivial centers, and the quotient of their centers $Q / Z(Q)$ is cyclic so Q must be abelian.

Therefore, G has a normal subgroup which is solvable.
Finally, G / P_{7} has order 12 , which we are given implies that G / P_{7} is a solvable group.
Therefore, G has a normal subgroup P_{7} which is solvable and G / P_{7} is solvable, so G itself is solvable.

