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Problem 1. Use Sylow’s theorems directly to find, up to isomorphism, all possible
structures of groups of order 5 - 7 - 23.

Solution. Let G be a group of order 5- 7 - 23.

By Sylow, no3 =1 mod 23 and no3|35, so ngg = 1.

Similarly, n; = 1 mod 7 and n;|5 - 23. Since 5-23 = 115 = 3 mod 7, we have that
n7 = 1.

If G also has a normal Sylow 5 subgroup, then G is abelian and isomorphic to
Z5 X Z7 X Z23.

If G does not have a normal Sylow 5-subgroup, then by the recognizing semi-direct
products theorem, G is isomorphic to a semi direct product of its Sylow subgroups.

‘(p : Py — Aut(PrPy3) ‘ Let Ps, P, Py3 be Sylow 5,7, 23-subgroups of GG respectively.

Then if we have a homomorphism, ¢ : Ps — Aut(PrPy3) = Aut(Pr) X Aut(Pag) = Zg X Zo
(since 7 and 23 are coprime), we have that ¢ must be trivial since neither group has any
elements of order 5.

0 PsPr — Aut(Py3) | If ¢ : PsPr — Aut(Pa3) = Zgy is @ homomorphism, then ¢ must
be again trivial since Zsyo has no elements of order 5 or order 7.

@ PsPog — Aut(Pr) |if ¢ : PsPag — Aut(P;) & Zg is a homomorphism, then ¢ is again
trivial since there are no elements of order 5 or order 23 in Zs.

Thus, there is only one group of order 5.7 - 23,

Z5 X Z7 X Zgg
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Problem 2. Let A, B,C be finitely generated F[x] = R modules, for F' a field, with C'
torsion free. Show that A ®r C' = B ®z C implies that A = B. Show by example that
this conclusion can fail when C' is not torsion free.

Solution. Because F is a field, F[z] is a PID, so because A, B, C' are finitely generated, by
the structure theorem, we can write each as a direct sum of its free and torsion part.

Namely, because C' is torsion free, C'is a free module so C' = R" for some n.

Thus,
ARrCZAQRR"=Z A" =2 Br(C = B".

Since A" = B" implies that the free parts and torsion parts of A™ and B™ are both
isomorphic. Namely, if A = R*@® T(A) and B = R® & T(B) with T(A) and T(B) the torsion
parts of A and B respectively.

Then there exists a chain of nonzero ideals (a;) C (a3) C -+ C (ax) C A and (by) C
(by) C -+ C (b)) C B with

I

T(A) = @R/(@)  T(B)=@R/0).

Now, since A" = B", then
R"™=R™ — a=0

and

12

(T(A)" = (RB/(a))" & - & (B/(ax))" = (R/(b1))" & - -- & (R/(br))".

Therefore, each component, R/(a;) of T(A) must be represented in the decomposition
for T(B) so T(A) = T(B).

Thus, A = B.

Now, assume C' has nontrivial torsion part. Let A = B @ Ann(C'). Then

ARrC=(B®Am(C)) ®r C = (Ber(C)® (Ann(C)®@rC) =2 B®rC

since Ann(C') C R and so each element transfers over and kills C. However, since Ann(C') is
nonzero, A % B. ¥



Kayla Orlinsky
Fall 2012

Problem 3. Working in the polynomial ring Clz,y], show that some power of (z +
y)(@® +y' —2) isin (2° + %, y° + ay).

Solution. By Nullstellensatz, if I = (2% + y3,3® + xy), and g(z,y) is satisfied g(a,b) = 0
for all (a,b) € V(I), then g(z,y) € VI so there exists a natural number m such that g™ € I.

Thus, we compute V (I).

If 234+ y? = 0 and y® + 2y = 0 simultaneously, then 23y +1y° —y® —2y = 0so 23y —ay = 0
so xy(z* — 1) = 0. Thus, we have x = 0,1, —1 or y = 0. This gives the following points
(07 O)? (172)7 (17 _Z)7 (_17 1)7 (_17 _1) € V(l’?) + y27y3 + l’y)

Since (z + y)(x* + y* — 2) (0,0), (—1,1) immediately satisfy (x + y), we need only check
(22 +y* —2).

Since 12+ (i) —2=1+1—-2=0, 12+ (—i)* —=2=0, (—1)2 + (-1)* =2 =2-2=0,
we have by Nullstellensatz that (z + y)(z* + y* — 2) is satisfied by every point (a,b) €
V(z® + 32, y3 + zy), so (x4 y)(z? + y* — 2) € VI and there exists an integer m such that
(@ +y) @ +y' —2)™ € (@ +y%y° + ay). Y
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Problem 4. For integers n,m > 1, let A C M,(Z,,) be a subring with the property
that if x € A with 22 = 0 then x = 0. Show that A is commutative. Is the converse true?

Solution. First, if 22 =0 = 2 = 0, then we note that if 2" =0 = z = 0 for all n.
To see this, we simply note that for any positive integer n, there exists natural numbers
s and r < 2% such that n = 2° 4+ r. Thus,

s s__ s+1 s
" =0 = ¥ T =2 =(1@¥)=0.

Therefore, 2> = (z¥')? = 0 and so on recursively until we obtain that z = 0.
Namely, A is a finite ring with no nilpotent elements.
Let € J(A). Then because J(A) is right quasi-regular, 1 — x is a unit in A.

Then, we construct a decreasing chain of ideals
() D (2") >

which must terminate for some n. Namely, (z") = (2"™!) so 2" = rz™™! for some r € A.
However, rz € J(A) and so 1 — rz is a unit. Therefore,

" =" = 2"(1—r2) =0 = 2" =0.

Namely, = is nilpotent. Since R has no nilpotent elements, J(A) = 0.
Thus, by Artin Wedderburn,

A= M, (D) & @& M,,(Dy)

where the Dy are division rings.

Now, A contains no nilpotent elements, however matrix rings contain nilpotent elements
over any division ring, since

00 0 1
00 0 0
00 -+ 00
is nilpotent of degree 2 over any division ring where 1 # 0.
Namely, n; = 1 for all i.
Finally, because the D; are finite, by Wedderburn, the D, are all fields.

Thus, A is a finite direct sum (isomorphic to a finite direct product) of fields and is
therefore commutative.
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Let ) _

a 0 0 0 Zy,

0 a O 0 0

0 0a --- 0 O

A= ) _ . la € Zp,
0 00 a 0
0 0 0 0 a |

Then A is indeed a subring, it is commutative since every element of A is of the form
aX + bl where

However, X? = 0 and X # 0. ¥
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Problem 5. Let F be the splitting field of f(z) = 2° — 2 over Q. Show that Gal(F/Q)
is isomorphic to the dihedral group of order 12.

Solution. First, f is irreducible by Eisenstein with p = 2. 2 divides every coefficient of f
except the leading coefficient and 2% does not divide the constant term.

Therefore, since f is irreducible over Q, it is separable. Thus, F' is the splitting field of a
separable polynomial over Q and so F'/Q is a Galois extension.

Next, let & be a 6™ root of unity. Then ¢(6) = p(2)p(3) = 1-2 = 2 so there are 2
primitive roots of unity.

Namely, F' = Q(&,v/2) and since &€ ¢ Q(v/2) because ¢ is a complex number and
Q(v/2) C R, we have that

[Q(&,V/2) : Q(V2)] = [Q(€) : Q] = 2.
Therefore,
[F:Q]=[F:Q(V2)Q(V2):Q =2-6=12

Let G = Gal(F/Q), then |G| = 12.

Now, let 0 € G be defined by 0(v2) = v/2¢, 0(€) = &, and 7 € G be defined by
(26 = 3 =

Then, o has order 6 since £ is a primitive 6'® root of unity, and 7 has order 2.

Now, note that o(v/26771) = v/2¢7 so o7 (V/2¢7) = /2¢771

Finally,

rr(Y3E) = o(Y3E) = Y2
and
7_0_71(\6/563') _ T(%fjfl) _ \‘/§€*j+1'
Therefore, GG is described by

G=(ro|?=0"=1,0r=70"") = Dis.
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Problem 6. Given that all groups of order 12 are solvable show that any group of order
22.3. 7% is solvable.

Solution. Let G be a group of order 22 - 3 - 72. By Sylow, n; =1 mod 7 and n;|12. Thus,
ny = 1 so G has a normal Sylow 7 subgroup.

Let P; be the Sylow 7-subgroup of G. Then |P;| = 72, and so P is abelian and namely
solvable. Note that groups of order p? @ are abelian since they have nontrivial centers, and
the quotient of their centers Q/Z(Q) is cyclic so (Q must be abelian.

Therefore, G' has a normal subgroup which is solvable.
Finally, G/P; has order 12, which we are given implies that G/ P; is a solvable group.

Therefore, G has a normal subgroup P; which is solvable and G/ P; is solvable, so G
itself is solvable. ¥



