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Problem 1. Let G be a finite group with a cyclic Sylow 2-subgroup S.

(a) Show that any element of odd order in NG(S) centralizes S.

(b) Show that NG(S) = CG(S).

(c) Give an example to show that (a) can fail if S is abelian.

Solution.

(a) Since S ⊂ CG(S) ⊂ NG(S), (a) and (b) are equivalent. Namely, [NG(S) : CG(S)] =
2n+ 1 for some n ∈ N.
Therefore, we will prove (b) directly. In fact, we will prove something stronger.

Claim 1. If p is the smallest prime dividing |G| and P is a cyclic Sylow
p-subgroup, then NG(P ) = CG(P ).

Proof. Let p be the smallest prime dividng |G|. Then, since

P E CG(P ) E NG(P )

we have that

[NG(P ) : CG(P )] = n gcd(n, p) = 1.

Furthermore, because p is the smallest prime dividing |G|, n is only divisible
by primes q with q > p.

Now, let

ϕ : NG(P )→ Aut(P )
a 7→ σa

be the map of the conjugation action of NG(P ) on P.
Then CG(P ) is clearly the kernel of this action and so by the first isomor-
phism theorem,

NG(P )/CG(P ) ∼= A ⊂ Aut(P ).
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Finally, because P = 〈x〉 is cyclic, we have that the automorphisms of P
are exactly the maps x 7→ xk for gcd(k, p) = 1. Namely,

|Aut(P )| = pl−1(p− 1) by the Euler Totient Function

assuming that |P | = pl. Since the divisors of this are not greater than
p, and |NG(P )/CG(P )| has only divisors greater than p, it must be that
|NG(P )/CG(P )| = 1.
Namely,

NG(P ) = CG(P ).

�

(b) Since 2 is clearly the smallest prime dividing |G|, the claim in (a) applies and we are
done.

(c) There is a small example where S is not abelian to show how (b) can fail.
Assume S is a 2-Sylow subgroup and

S ∼= D8 = 〈r, s | s4 = r2 = 1, sr = r−1s〉.

which is non-abelian.
Let G = S4. Since S is non-abelian, CG(S) does not contain S but S ⊂ NG(S) so the
two are certainly not equal.
However, in this case, NG(S) = S and so it contains no elements of odd order.
To contradict (a), we can consider G = A4 which has a normal 2-Sylow subgroup S
isomorphic to Z2 × Z2.

Thus, NG(S) = G and G certainly contains elements of odd order. However, one can
check that (1 2 3) ∈ G has odd order and (1 2 3) /∈ CG(S). In fact, it is true that
CG(S) = S.

�
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Problem 2. Let G be a finite group with a cyclic Sylow 2-subgroup S 6= 1.

(a) Let ρ : G→ Sn be the regular representation with n = |G|. Show that ρ(G) is not
contained in An.

(b) Show that G has a normal subgroup of index 2.

(c) Show that the set of elements of odd order in G form a normal subgroup N and
G = NS.

Solution.

(a) The regular representation ρ is the map which sends g 7→ λg which is the left multipli-
cation map, namely, λg(h) = gh for all h ∈ G.
Therefore, by construction, λg has no fixed points and, because ρ is a homomorphism,
λg has order o(g).

Claim 2. λg can be represented in Sn as a product of |G|
o(g) cycles each of

length o(g).

Proof. Let λg = σ1 · · ·σl with σi disjoint cycles.
Now, because λg has no fixed points, the product of the σi also have no
fixed points.
Next, we note that λgt = (λg)t is non-trival for all t < o(g) and λgt also
has no fixed points.
Therefore,

(σ1 · · ·σl)t = σt1 · · ·σtl
has no fixed points for all t < o(g) and so, letting ki be the length of σi for
all i, we get that ki ≥ o(g) for all i.
However, since o(λg) = o(g) = lcm(distinct cycle lengths), we get that
ki ≤ o(g) for all i.
Therefore, ki = o(g) for all i.
Finally, the only way for there to be no fixed points is if all n integers are
expressed in some σi. Therefore,

n =
l∑

i=1
ki = lo(g) =⇒ l = n

o(g) .

Thus, λg can be expressed as n
o(g) cycles each of length o(g). �
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Let S = 〈x〉 since it is cyclic, o(x) = 2k for |S| = 2k.
From the claim, ρ(x) = λx can be written as a product of n

2k cycles, each of length 2k.
Since S is a 2-Sylow subgroup, n

2k is odd, and so λx is a product of an odd number
of even length cycles. Since cycles of even length are expressed as an odd number of
transpositions, λx is a product of an odd number of transpositions, an odd number of
times.
Therefore, ρ(x) = λx /∈ An and so ρ(G) 6⊂ An.

(b) Since ρ(G) 6⊂ An by (a), and since An is normal in Sn, we have that

An ( ρ(G)An ⊂ Sn.

However, since [Sn : An] = 2, we have that An is maximal and so ρ(G)An = Sn.
Now, because

|Sn|
|An|

= 2

and by the first isomorphism theorem,

ρ(G)An/An ∼= ρ(G)/(ρ(G) ∩ An)

so we get that
2 = |Sn|
|An|

= |ρ(G)An|
|An|

= |ρ(G)|
|ρ(G) ∩ An|

.

Thus, because ρ(G) ∩ An ⊂ ρ(G) is a subgroup, we have that ρ(G) has a subgroup of
index 2.
And since ρ(G) ∼= G, G has a subgroup of index 2 which is normal because 2 is the
smallest prime dividing |G|. (For a proof see Spring 2010, Claim 1)

(c) Let N be the set of elements of odd order in G.
Now, let |G| = n = 2km. Then, because G by (b), we can let K1 be a normal subgroup
of index 2. Then |K1| = 2k−1m.

If we can show that K1 has a cyclic Sylow 2-subgroup, then (b) will apply again and
K1 will have a normal subgroup of index 2.
Let S = 〈x〉. Then x has order 2k by assumption. Therefore, x2 has order 2k−1 since

(x2)2k−1 = x2·2k−1 = x2k = e

so o(x2)|2k−1 and also clearly o(x2) ≥ 2k−1.

So, we claim that 〈x2〉 is a copy of a Sylow 2-subgroup of K1.

However, this follows since ρ(K1) ∼= ρ(G) ⊂ An and since ρ(x2) = λx2 ∈ An.
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This is because λx2 can be represented as a product of |G|
o(x2) = 2km

2k−1 = 2k cycles of length
2k−1. Since even length cycles are odd and the product of two odd cycles is even, we
get that λx2 is even.
Therefore, x2 ∈ K1 and so K1 has a cyclic Sylow 2-subgroup.
Thus, (b) applies and so we repeat to obtain a chain

Kk E Kk−1 E · · · E K1 E G

with |Kj| = 2k−jm.
Therefore, |Kk| = m and is a subgroup of G containing only odd order elements. Let
Kk = N.

Finally, G ∼= K1〈x〉 since x /∈ K1 and K1 is of minimal index and so is of maximal
order.
Similarly, K1 ∼= K2〈x2〉. Thus,
Therefore,

G ∼= Ne〈x2k−1〉 · · · 〈x2〉〈x〉 = NS.

Note that this follows from order arguments and uses no assumptions that N is normal
in G. Namely, if |HK| = |G|, then HK = G regardless of whether or not H or K is
normal.
Now, we simply note that if n ∈ N with order t for t odd, then

(xlnx−l)t = xlntx−l = xlex−l = e

and so xlnx−l has order dividing t, and so namely, it has odd order.
Therefore, xlnx−l ∈ N for all l, so N ⊂ NG(S).
Now, let g ∈ G. Then since G = NS, g = n0x

l for some n0 ∈ N and some l.
Therefore,

gng−1 = n0x
lnx−ln−1

0 = n0n
′n−1

0 ∈ N

since xl ∈ S and N ⊂ NG(S).
Therefore, N is normal in G.

�
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Problem 3. For a group G and p a prime let G(p) = {g ∈ G | gp = 1}.

(a) Show that if G is abelian, then G(p) is a subgroup of G. Give an example to show
that G(p) need not be a subgroup in general.

(b) Let G,H be finitely generated abelian groups with G/G(p) ∼= H/H(p) and
G/G(q) ∼= H/H(q) for different primes p, q. Show that G ∼= H.

Solution.

(a) Assume G is abelian. Then let a, b ∈ G(p). Then (ab−1)p = apb−p = 1 since G is abelian
and so ab−1 ∈ G(p).
Let G = S3. Then

G(2) = {1, (1 2), (1 3), (2 3)}
which is clearly not a subgroup since

(1 2)(2 3) = (1 2 3) /∈ G(2).

(b) Let G,H be finitely generated abelian groups with G/G(p) ∼= H/H(p) and G/G(q) ∼=
H/H(q) for different primes p, q.
By the fundamental theorem of abelian groups, we can write

G ∼= Zm ⊕ Zα1
p1 ⊕ · · · ⊕ Zαk

pk

H ∼= Zn ⊕ Zβ1
q1 ⊕ · · · ⊕ Zβl

ql

Then, if a ∈ G(p), then o(a)|p and so namely, either a = 1 or a ∈ Zp.
If G(p) = 1 and H(p) = 1, then we are done.
Assume G(p) 6= 1. Then G(p) ∼= Ztp for some t > 0

H(p) = 1 Then pi = p for some i. WLOG, say p1 = p. Then

G/G(p) ∼= H

Zm ⊕ Zα1−t
p ⊕ · · · ⊕ Zαk

pk

∼= Zn ⊕ Zβ1
q1 ⊕ · · · ⊕ Zβl

ql

Therefore, with possible reindexing, m = n, k = l, and αi = βi for all i 6= 1, and
α1 − t = β1. Note that this can be proved using projection maps, or by counting
arguments.
Now, regardless of what G(q) and H(q) are, we will get a contradiction.
If G(q) and H(q) are both trivial, then H ∼= G so H 6∼= G/G(p). If G(q) 6= 1, then
G/G(q) ∼= H/H(q), however, this will imply, after possibly reindexing, that p1 = q1
and α1 = β1.
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However, this contradicts the above, that α1 − t = β1.

H(p) 6= 1 Then H(p) ∼= Zsp for s > 0 so, after possibly reindexing, we can take q1 = p.

G/G(p) ∼= H/H(p)
Zm ⊕ Zα1−t

p ⊕ · · · ⊕ Zαk
pk

∼= Zn ⊕ Zβ1−s
p ⊕ · · · ⊕ Zβl

ql

Thus, m = n, k = l, αi = βi for all i 6= 1, and α1 − t = β1 − s.
Now, we repeat with G(q) and H(q), which both cannot be trivial by the same argument
as earlier, to get that α1 = β1 and we are done.

�
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Problem 4. Let R be a prime ring with only finitely many right ideals.

(a) Show that R is a simple ring.

(b) Prove that either R is finite or R is a division ring.

Solution.

(a) A prime ring is a ring satisfying: if a, b ∈ R, and arb = 0 for all r ∈ R implies a = 0 or
b = 0. Alternatively, if I, J are both ideals of R and IJ = 0, then I = 0 or J = 0.
Now, since R has only finitely many right ideals, it is right artinian and so J(R) is
nilpotent.
However, if (J(R))n = 0, then either J(R) = 0 or (J(R))n−1 = 0 because R is prime.
Recursively, we get that J(R) = 0.
Thus, by Artin-Wedderburn, R is semisimple and so

R ∼= Mn1(D1)⊕ · · · ⊕Mnk
(Dk)

for Di division rings.
Now, recall that the matrix ringsMni

(Di) represent simple submodules of R and further
note that the submodules of R (considered as an R-module) are exactly the ideals of R
as a ring.
Finally, because theMni

(Di) are simple submodules, they correspond exactly to minimal
ideals Ii of R. Namely, Mni

(Di) ∼= R/Mi for some maximal ideal Mi ⊂ R.
Therefore, because IiIj is an ideal for all i, j and IiIj ( Ii which is minimal, we get
that IiIj = 0 for all i 6= j.

However, because R is prime, this forces Ii = 0 or Ij = 0.
Recursively, we lose all but one of the matrix rings in the decomposition and so

R ∼= Mn(D) which is simple.

(b) If R is finite we are done.
Assume R is not finite. From (a),

R ∼= Mn(D)

for some division ring D. Note that because R is assumed infinite, D is infinite.
However, the right ideals of Mn(D) correspond exactly to the right D-submodules of
the free D-module Dn.
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If n > 1, then Dn has infinitely many submodules. For example, Dn(1, a, 0, ..., 0) ∼=
D ⊕Da is a non-trivial proper submodule for all a ∈ D (of which there are infinitely
many because D must be infinite).
This implies that R has infinitely many right ideals, which is a contradiction.
Thus, n = 1 and so R ∼= D.

�
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Problem 5. Let R = C[x1, ..., xn] and let J be a nonzero proper ideal of R. Let
A = A(X), B = B(X) ∈Mr(R) and assume that det(A) is a product of distinct monic
irreducible polynomials in R. Assume that for each α = (a1, ..., an) ∈ C, B(α) ∈Mr(C)
invertible implies that A(α) is invertible. Show that det(A) divides det(B) in R.

Solution. if whenever B(α) is invertible A(α) is also invertible, then whenever det(B) 6= 0,
det(A) 6= 0.

Thus, if det(A) = 0, det(B) = 0. Therefore, if I = (det(A)), every α ∈ (V (I)) also
satisfies det(B)(α) = det(B(α)) = 0.

Therefore, by Nullstellenzat’s Part II, there exists an n > 0 such that det(B)n ∈ I.
Therefore, there exists f(X) ∈ R such that det(B)n = f(X) det(A). Since det(A)

consists of a product of distinct monic irreducible polynomials, say det(A) = g1(X) · · · gk(X),
for each gi(X)| det(A), gi(X)| det(B)n. Inductively, by the irreducibility of gi, we get that
gi(X)| det(B) for all i.

Therefore, det(A)| det(B) in R. �
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Problem 6. Let L be the splitting field over Q for p(x) = x10 + 3x5 + 1. Let G =
Gal(L/Q).

(a) Show that G has a normal subgroup of index 2.

(b) Show that 4 divides |G|.

(c) Show that G is solvable.

Solution.

(a) Let u = x5. Then p(x) = x10 +3x5 +1 = u2 +3u+1. Thus, using the quadratic formula,

u = −3±
√

9− 4
2 = −3±

√
5

2 /∈ Q.

Therefore, u2 + 3u+ 1 is irreducible over Q and so p(x) is irreducible over Q. We can
note also that p(x) is separable since x5 = −3±

√
5

2 , yields no repeated roots. Namely, L
is indeed a Galois extension over Q.

Now, if α = 5
√
−3+

√
5

2 and β = 5
√
−3−

√
5

2 , then the roots of p(x) are exactly, αξi and βξj
where ξ is a 5th root of unity and for i, j ∈ {1, ..., 5}.
Therefore,

G = Q( 5
√
α, 5

√
β, ξ).

Now, by the Galois Correspondence Theorem, the normal subgroups of G correspond
exactly to the Galois extensions of Q contained in L, and furthermore, there is an
N E G with [G : N ] = 2 if and only if there is a K ⊂ L such that [L : K] = |G|

2 , or
alternatively, if and only if there is a K ⊂ L with [K : Q] = 2. Since

α5 − β5 = −3 +
√

5
2 − −3−

√
5

2 = 2
√

5
2 =

√
5 ∈ L

we have that Q(
√

5) ⊂ L.
Since [Q(

√
5) : Q] = 2, there exists a subgroup N ⊂ G with [G : N ] = 2 which is

normal since 2 is the smallest prime dividing |G|. (To see a proof of this see Spring
2010, Problem 2, Claim 1).
Show that G has a normal subgroup of index 2.

(b) Since ξ satisfies x4 +x3 +x2 +x+ 1, [Q(ξ) : Q] = 4 and so G has a subgroup of index 4.
Namely, 4||G|.
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(c) G is solvable if and only if L is contained in a radical extension of Q.
However, L is a radical extension of Q.
Recall that a radical extension is one in which Q = K1 ⊂ K2 ⊂ · · · ⊂ Kn = L with
Ki = Ki−1(αi) for all i for αi satisfying that there exists t with αti ∈ Ki−1.
Therefore, since

Q ⊂ Q(ξ) ⊂ Q(
√

5, ξ) ⊂ Q(
√

5, α, ξ) ⊂ Q(
√

5, α, β, ξ) = L

and

(β)5 = 3− α5 ∈ Q(
√

5, α, ξ)

(α)5 = −3 +
√

5
2 ∈ Q(

√
5, ξ)

(
√

5)2 = 5 ∈ Q(ξ)
(ξ)5 = 1 ∈ Q

we have that L is a radical extension.
Therefore, G is solvable.

�
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