Kayla Orlinsky Algebra Exam Spring 2011

Problem 1. Let G be a finite group with a cyclic Sylow 2-subgroup S.
(a) Show that any element of odd order in $N_{G}(S)$ centralizes S.
(b) Show that $N_{G}(S)=C_{G}(S)$.
(c) Give an example to show that (a) can fail if S is abelian.

Solution.

(a) Since $S \subset C_{G}(S) \subset N_{G}(S)$, (a) and (b) are equivalent. Namely, $\left[N_{G}(S): C_{G}(S)\right]=$ $2 n+1$ for some $n \in \mathbb{N}$.
Therefore, we will prove (b) directly. In fact, we will prove something stronger.
Claim 1. If p is the smallest prime dividing $|G|$ and P is a cyclic Sylow p-subgroup, then $N_{G}(P)=C_{G}(P)$.

Proof. Let p be the smallest prime dividng $|G|$. Then, since

$$
P \unlhd C_{G}(P) \unlhd N_{G}(P)
$$

we have that

$$
\left[N_{G}(P): C_{G}(P)\right]=n \quad \operatorname{gcd}(n, p)=1
$$

Furthermore, because p is the smallest prime dividing $|G|, n$ is only divisible by primes q with $q>p$.
Now, let

$$
\begin{aligned}
\varphi: N_{G}(P) & \rightarrow \operatorname{Aut}(P) \\
a & \mapsto \sigma_{a}
\end{aligned}
$$

be the map of the conjugation action of $N_{G}(P)$ on P.
Then $C_{G}(P)$ is clearly the kernel of this action and so by the first isomorphism theorem,

$$
N_{G}(P) / C_{G}(P) \cong A \subset \operatorname{Aut}(P)
$$

Finally, because $P=\langle x\rangle$ is cyclic, we have that the automorphisms of P are exactly the maps $x \mapsto x^{k}$ for $\operatorname{gcd}(k, p)=1$. Namely,

$$
|\operatorname{Aut}(P)|=p^{l-1}(p-1) \quad \text { by the Euler Totient Function }
$$

assuming that $|P|=p^{l}$. Since the divisors of this are not greater than p, and $\left|N_{G}(P) / C_{G}(P)\right|$ has only divisors greater than p, it must be that $\left|N_{G}(P) / C_{G}(P)\right|=1$.
Namely,

$$
N_{G}(P)=C_{G}(P)
$$

(b) Since 2 is clearly the smallest prime dividing $|G|$, the claim in (a) applies and we are done.
(c) There is a small example where S is not abelian to show how (b) can fail.

Assume S is a 2-Sylow subgroup and

$$
S \cong D_{8}=\left\langle r, s \mid s^{4}=r^{2}=1, s r=r^{-1} s\right\rangle
$$

which is non-abelian.
Let $G=S_{4}$. Since S is non-abelian, $C_{G}(S)$ does not contain S but $S \subset N_{G}(S)$ so the two are certainly not equal.
However, in this case, $N_{G}(S)=S$ and so it contains no elements of odd order.
To contradict (a), we can consider $G=A_{4}$ which has a normal 2-Sylow subgroup S isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Thus, $N_{G}(S)=G$ and G certainly contains elements of odd order. However, one can check that $\left(\begin{array}{lll}1 & 2 & 3\end{array}\right) \in G$ has odd order and $\left(\begin{array}{lll}1 & 2 & 3\end{array}\right) \notin C_{G}(S)$. In fact, it is true that $C_{G}(S)=S$.

Problem 2. Let G be a finite group with a cyclic Sylow 2-subgroup $S \neq 1$.
(a) Let $\rho: G \rightarrow S_{n}$ be the regular representation with $n=|G|$. Show that $\rho(G)$ is not contained in A_{n}.
(b) Show that G has a normal subgroup of index 2 .
(c) Show that the set of elements of odd order in G form a normal subgroup N and $G=N S$.

Solution.

(a) The regular representation ρ is the map which sends $g \mapsto \lambda_{g}$ which is the left multiplication map, namely, $\lambda_{g}(h)=g h$ for all $h \in G$.
Therefore, by construction, λ_{g} has no fixed points and, because ρ is a homomorphism, λ_{g} has order $o(g)$.

Claim 2. λ_{g} can be represented in S_{n} as a product of $\frac{|G|}{o(g)}$ cycles each of length $o(g)$.

Proof. Let $\lambda_{g}=\sigma_{1} \cdots \sigma_{l}$ with σ_{i} disjoint cycles.
Now, because λ_{g} has no fixed points, the product of the σ_{i} also have no fixed points.
Next, we note that $\lambda_{g^{t}}=\left(\lambda_{g}\right)^{t}$ is non-trival for all $t<o(g)$ and $\lambda_{g^{t}}$ also has no fixed points.

Therefore,

$$
\left(\sigma_{1} \cdots \sigma_{l}\right)^{t}=\sigma_{1}^{t} \cdots \sigma_{l}^{t}
$$

has no fixed points for all $t<o(g)$ and so, letting k_{i} be the length of σ_{i} for all i, we get that $k_{i} \geq o(g)$ for all i.
However, since $o\left(\lambda_{g}\right)=o(g)=\operatorname{lcm}$ (distinct cycle lengths), we get that $k_{i} \leq o(g)$ for all i.
Therefore, $k_{i}=o(g)$ for all i.
Finally, the only way for there to be no fixed points is if all n integers are expressed in some σ_{i}. Therefore,

$$
n=\sum_{i=1}^{l} k_{i}=l o(g) \Longrightarrow l=\frac{n}{o(g)} .
$$

Thus, λ_{g} can be expressed as $\frac{n}{o(g)}$ cycles each of length $o(g)$.

Let $S=\langle x\rangle$ since it is cyclic, $o(x)=2^{k}$ for $|S|=2^{k}$.
From the claim, $\rho(x)=\lambda_{x}$ can be written as a product of $\frac{n}{2^{k}}$ cycles, each of length 2^{k}.
Since S is a 2-Sylow subgroup, $\frac{n}{2^{k}}$ is odd, and so λ_{x} is a product of an odd number of even length cycles. Since cycles of even length are expressed as an odd number of transpositions, λ_{x} is a product of an odd number of transpositions, an odd number of times.
Therefore, $\rho(x)=\lambda_{x} \notin A_{n}$ and so $\rho(G) \not \subset A_{n}$.
(b) Since $\rho(G) \not \subset A_{n}$ by (a), and since A_{n} is normal in S_{n}, we have that

$$
A_{n} \subsetneq \rho(G) A_{n} \subset S_{n}
$$

However, since $\left[S_{n}: A_{n}\right]=2$, we have that A_{n} is maximal and so $\rho(G) A_{n}=S_{n}$.
Now, because

$$
\frac{\left|S_{n}\right|}{\left|A_{n}\right|}=2
$$

and by the first isomorphism theorem,

$$
\rho(G) A_{n} / A_{n} \cong \rho(G) /\left(\rho(G) \cap A_{n}\right)
$$

so we get that

$$
2=\frac{\left|S_{n}\right|}{\left|A_{n}\right|}=\frac{\left|\rho(G) A_{n}\right|}{\left|A_{n}\right|}=\frac{|\rho(G)|}{\left|\rho(G) \cap A_{n}\right|}
$$

Thus, because $\rho(G) \cap A_{n} \subset \rho(G)$ is a subgroup, we have that $\rho(G)$ has a subgroup of index 2.
And since $\rho(G) \cong G, G$ has a subgroup of index 2 which is normal because 2 is the smallest prime dividing $|G|$. (For a proof see Spring 2010, Claim 1)
(c) Let N be the set of elements of odd order in G.

Now, let $|G|=n=2^{k} m$. Then, because G by (b), we can let K_{1} be a normal subgroup of index 2. Then $\left|K_{1}\right|=2^{k-1} m$.
If we can show that K_{1} has a cyclic Sylow 2-subgroup, then (b) will apply again and K_{1} will have a normal subgroup of index 2 .
Let $S=\langle x\rangle$. Then x has order 2^{k} by assumption. Therefore, x^{2} has order 2^{k-1} since

$$
\left(x^{2}\right)^{2^{k-1}}=x^{2 \cdot 2^{k-1}}=x^{2^{k}}=e
$$

so $o\left(x^{2}\right) \mid 2^{k-1}$ and also clearly $o\left(x^{2}\right) \geq 2^{k-1}$.
So, we claim that $\left\langle x^{2}\right\rangle$ is a copy of a Sylow 2 -subgroup of K_{1}.
However, this follows since $\rho\left(K_{1}\right) \cong \rho(G) \subset A_{n}$ and since $\rho\left(x^{2}\right)=\lambda_{x^{2}} \in A_{n}$.

This is because $\lambda_{x^{2}}$ can be represented as a product of $\frac{|G|}{o\left(x^{2}\right)}=\frac{2^{k} m}{2^{k-1}}=2 k$ cycles of length 2^{k-1}. Since even length cycles are odd and the product of two odd cycles is even, we get that $\lambda_{x^{2}}$ is even.
Therefore, $x^{2} \in K_{1}$ and so K_{1} has a cyclic Sylow 2-subgroup.
Thus, (b) applies and so we repeat to obtain a chain

$$
K_{k} \unlhd K_{k-1} \unlhd \cdots \unlhd K_{1} \unlhd G
$$

with $\left|K_{j}\right|=2^{k-j} m$.
Therefore, $\left|K_{k}\right|=m$ and is a subgroup of G containing only odd order elements. Let $K_{k}=N$.
Finally, $G \cong K_{1}\langle x\rangle$ since $x \notin K_{1}$ and K_{1} is of minimal index and so is of maximal order.
Similarly, $K_{1} \cong K_{2}\left\langle x^{2}\right\rangle$. Thus,
Therefore,

$$
G \cong N e\left\langle x^{2^{k-1}}\right\rangle \cdots\left\langle x^{2}\right\rangle\langle x\rangle=N S
$$

Note that this follows from order arguments and uses no assumptions that N is normal in G. Namely, if $|H K|=|G|$, then $H K=G$ regardless of whether or not H or K is normal.

Now, we simply note that if $n \in N$ with order t for t odd, then

$$
\left(x^{l} n x^{-l}\right)^{t}=x^{l} n^{t} x^{-l}=x^{l} e x^{-l}=e
$$

and so $x^{l} n x^{-l}$ has order dividing t, and so namely, it has odd order.
Therefore, $x^{l} n x^{-l} \in N$ for all l, so $N \subset N_{G}(S)$.
Now, let $g \in G$. Then since $G=N S, g=n_{0} x^{l}$ for some $n_{0} \in N$ and some l.
Therefore,

$$
g n g^{-1}=n_{0} x^{l} n x^{-l} n_{0}^{-1}=n_{0} n^{\prime} n_{0}^{-1} \in N
$$

since $x^{l} \in S$ and $N \subset N_{G}(S)$.
Therefore, N is normal in G.

Problem 3. For a group G and p a prime let $G(p)=\left\{g \in G \mid g^{p}=1\right\}$.
(a) Show that if G is abelian, then $G(p)$ is a subgroup of G. Give an example to show that $G(p)$ need not be a subgroup in general.
(b) Let G, H be finitely generated abelian groups with $G / G(p) \cong H / H(p)$ and $G / G(q) \cong H / H(q)$ for different primes p, q. Show that $G \cong H$.

Solution.

(a) Assume G is abelian. Then let $a, b \in G(p)$. Then $\left(a b^{-1}\right)^{p}=a^{p} b^{-p}=1$ since G is abelian and so $a b^{-1} \in G(p)$.
Let $G=S_{3}$. Then

$$
G(2)=\left\{1,\left(\begin{array}{ll}
1 & 2
\end{array}\right),\left(\begin{array}{ll}
1 & 3
\end{array}\right),\left(\begin{array}{ll}
2 & 3
\end{array}\right)\right\}
$$

which is clearly not a subgroup since

$$
\left(\begin{array}{ll}
1 & 2
\end{array}\right)\left(\begin{array}{ll}
2 & 3
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right) \notin G(2) .
$$

(b) Let G, H be finitely generated abelian groups with $G / G(p) \cong H / H(p)$ and $G / G(q) \cong$ $H / H(q)$ for different primes p, q.
By the fundamental theorem of abelian groups, we can write

$$
\begin{aligned}
G & \cong \mathbb{Z}^{m} \oplus \mathbb{Z}_{p_{1}}^{\alpha_{1}} \oplus \cdots \oplus \mathbb{Z}_{p_{k}}^{\alpha_{k}} \\
H & \cong \mathbb{Z}^{n} \oplus \mathbb{Z}_{q_{1}}^{\beta_{1}} \oplus \cdots \oplus \mathbb{Z}_{q_{l}}^{\beta_{l}}
\end{aligned}
$$

Then, if $a \in G(p)$, then $o(a) \mid p$ and so namely, either $a=1$ or $a \in \mathbb{Z}_{p}$.
If $G(p)=1$ and $H(p)=1$, then we are done.
Assume $G(p) \neq 1$. Then $G(p) \cong \mathbb{Z}_{p}^{t}$ for some $t>0$
$H(p)=1$ Then $p_{i}=p$ for some i. WLOG, say $p_{1}=p$. Then

$$
\begin{aligned}
G / G(p) & \cong H \\
\mathbb{Z}^{m} \oplus \mathbb{Z}_{p}^{\alpha_{1}-t} \oplus \cdots \oplus \mathbb{Z}_{p_{k}}^{\alpha_{k}} & \cong \mathbb{Z}^{n} \oplus \mathbb{Z}_{q_{1}}^{\beta_{1}} \oplus \cdots \oplus \mathbb{Z}_{q_{l}}^{\beta_{l}}
\end{aligned}
$$

Therefore, with possible reindexing, $m=n, k=l$, and $\alpha_{i}=\beta_{i}$ for all $i \neq 1$, and $\alpha_{1}-t=\beta_{1}$. Note that this can be proved using projection maps, or by counting arguments.

Now, regardless of what $G(q)$ and $H(q)$ are, we will get a contradiction.
If $G(q)$ and $H(q)$ are both trivial, then $H \cong G$ so $H \not \approx G / G(p)$. If $G(q) \neq 1$, then $G / G(q) \cong H / H(q)$, however, this will imply, after possibly reindexing, that $p_{1}=q_{1}$ and $\alpha_{1}=\beta_{1}$.

However, this contradicts the above, that $\alpha_{1}-t=\beta_{1}$.
$H(p) \neq 1$ Then $H(p) \cong \mathbb{Z}_{p}^{s}$ for $s>0$ so, after possibly reindexing, we can take $q_{1}=p$.

$$
\begin{aligned}
& G / G(p) \cong H / H(p) \\
& \mathbb{Z}^{m} \oplus \mathbb{Z}_{p}^{\alpha_{1}-t} \oplus \cdots \oplus \mathbb{Z}_{p_{k}}^{\alpha_{k}} \cong \mathbb{Z}^{n} \oplus \mathbb{Z}_{p}^{\beta_{1}-s} \oplus \cdots \oplus \mathbb{Z}_{q_{l}}^{\beta_{l}}
\end{aligned}
$$

Thus, $m=n, k=l, \alpha_{i}=\beta_{i}$ for all $i \neq 1$, and $\alpha_{1}-t=\beta_{1}-s$.
Now, we repeat with $G(q)$ and $H(q)$, which both cannot be trivial by the same argument as earlier, to get that $\alpha_{1}=\beta_{1}$ and we are done.

Problem 4. Let R be a prime ring with only finitely many right ideals.
(a) Show that R is a simple ring.
(b) Prove that either R is finite or R is a division ring.

Solution.

(a) A prime ring is a ring satisfying: if $a, b \in R$, and $a r b=0$ for all $r \in R$ implies $a=0$ or $b=0$. Alternatively, if I, J are both ideals of R and $I J=0$, then $I=0$ or $J=0$.
Now, since R has only finitely many right ideals, it is right artinian and so $J(R)$ is nilpotent.
However, if $(J(R))^{n}=0$, then either $J(R)=0$ or $(J(R))^{n-1}=0$ because R is prime. Recursively, we get that $J(R)=0$.
Thus, by Artin-Wedderburn, R is semisimple and so

$$
R \cong M_{n_{1}}\left(D_{1}\right) \oplus \cdots \oplus M_{n_{k}}\left(D_{k}\right)
$$

for D_{i} division rings.
Now, recall that the matrix rings $M_{n_{i}}\left(D_{i}\right)$ represent simple submodules of R and further note that the submodules of R (considered as an R-module) are exactly the ideals of R as a ring.

Finally, because the $M_{n_{i}}\left(D_{i}\right)$ are simple submodules, they correspond exactly to minimal ideals I_{i} of R. Namely, $M_{n_{i}}\left(D_{i}\right) \cong R / M_{i}$ for some maximal ideal $M_{i} \subset R$.
Therefore, because $I_{i} I_{j}$ is an ideal for all i, j and $I_{i} I_{j} \subsetneq I_{i}$ which is minimal, we get that $I_{i} I_{j}=0$ for all $i \neq j$.
However, because R is prime, this forces $I_{i}=0$ or $I_{j}=0$.
Recursively, we lose all but one of the matrix rings in the decomposition and so

$$
R \cong M_{n}(D) \quad \text { which is simple. }
$$

(b) If R is finite we are done.

Assume R is not finite. From (a),

$$
R \cong M_{n}(D)
$$

for some division ring D. Note that because R is assumed infinite, D is infinite.
However, the right ideals of $M_{n}(D)$ correspond exactly to the right D-submodules of the free D-module D^{n}.

If $n>1$, then D^{n} has infinitely many submodules. For example, $D^{n}(1, a, 0, \ldots, 0) \cong$ $D \oplus D a$ is a non-trivial proper submodule for all $a \in D$ (of which there are infinitely many because D must be infinite).
This implies that R has infinitely many right ideals, which is a contradiction.
Thus, $n=1$ and so $R \cong D$.

Problem 5. Let $R=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ and let J be a nonzero proper ideal of R. Let $A=A(X), B=B(X) \in M_{r}(R)$ and assume that $\operatorname{det}(A)$ is a product of distinct monic irreducible polynomials in R. Assume that for each $\alpha=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{C}, B(\alpha) \in M_{r}(\mathbb{C})$ invertible implies that $A(\alpha)$ is invertible. Show that $\operatorname{det}(A)$ divides $\operatorname{det}(B)$ in R.

Solution. if whenever $B(\alpha)$ is invertible $A(\alpha)$ is also invertible, then whenever $\operatorname{det}(B) \neq 0$, $\operatorname{det}(A) \neq 0$.

Thus, if $\operatorname{det}(A)=0, \operatorname{det}(B)=0$. Therefore, if $I=(\operatorname{det}(A))$, every $\alpha \in(V(I))$ also satisfies $\operatorname{det}(B)(\alpha)=\operatorname{det}(B(\alpha))=0$.

Therefore, by Nullstellenzat's Part II, there exists an $n>0$ such that $\operatorname{det}(B)^{n} \in I$.
Therefore, there exists $f(X) \in R$ such that $\operatorname{det}(B)^{n}=f(X) \operatorname{det}(A)$. Since $\operatorname{det}(A)$ consists of a product of distinct monic irreducible polynomials, say $\operatorname{det}(A)=g_{1}(X) \cdots g_{k}(X)$, for each $g_{i}(X)\left|\operatorname{det}(A), g_{i}(X)\right| \operatorname{det}(B)^{n}$. Inductively, by the irreducibility of g_{i}, we get that $g_{i}(X) \mid \operatorname{det}(B)$ for all i.

Therefore, $\operatorname{det}(A) \mid \operatorname{det}(B)$ in R.

Problem 6. Let L be the splitting field over \mathbb{Q} for $p(x)=x^{10}+3 x^{5}+1$. Let $G=$ $\operatorname{Gal}(L / \mathbb{Q})$.
(a) Show that G has a normal subgroup of index 2 .
(b) Show that 4 divides $|G|$.
(c) Show that G is solvable.

Solution.

(a) Let $u=x^{5}$. Then $p(x)=x^{10}+3 x^{5}+1=u^{2}+3 u+1$. Thus, using the quadratic formula,

$$
u=\frac{-3 \pm \sqrt{9-4}}{2}=\frac{-3 \pm \sqrt{5}}{2} \notin \mathbb{Q}
$$

Therefore, $u^{2}+3 u+1$ is irreducible over \mathbb{Q} and so $p(x)$ is irreducible over \mathbb{Q}. We can note also that $p(x)$ is separable since $x^{5}=\frac{-3 \pm \sqrt{5}}{2}$, yields no repeated roots. Namely, L is indeed a Galois extension over \mathbb{Q}.
Now, if $\alpha=\sqrt[5]{\frac{-3+\sqrt{5}}{2}}$ and $\beta=\sqrt[5]{\frac{-3-\sqrt{5}}{2}}$, then the roots of $p(x)$ are exactly, $\alpha \xi^{i}$ and $\beta \xi^{j}$ where ξ is a $5^{t h}$ root of unity and for $i, j \in\{1, \ldots, 5\}$.
Therefore,

$$
G=\mathbb{Q}(\sqrt[5]{\alpha}, \sqrt[5]{\beta}, \xi)
$$

Now, by the Galois Correspondence Theorem, the normal subgroups of G correspond exactly to the Galois extensions of \mathbb{Q} contained in L, and furthermore, there is an $N \unlhd G$ with $[G: N]=2$ if and only if there is a $K \subset L$ such that $[L: K]=\frac{|G|}{2}$, or alternatively, if and only if there is a $K \subset L$ with $[K: \mathbb{Q}]=2$. Since

$$
\alpha^{5}-\beta^{5}=\frac{-3+\sqrt{5}}{2}-\frac{-3-\sqrt{5}}{2}=\frac{2 \sqrt{5}}{2}=\sqrt{5} \in L
$$

we have that $\mathbb{Q}(\sqrt{5}) \subset L$.
Since $[\mathbb{Q}(\sqrt{5}): \mathbb{Q}]=2$, there exists a subgroup $N \subset G$ with $[G: N]=2$ which is normal since 2 is the smallest prime dividing $|G|$. (To see a proof of this see Spring 2010, Problem 2, Claim 1).
Show that G has a normal subgroup of index 2 .
(b) Since ξ satisfies $x^{4}+x^{3}+x^{2}+x+1,[\mathbb{Q}(\xi): \mathbb{Q}]=4$ and so G has a subgroup of index 4 . Namely, $4||G|$.
(c) G is solvable if and only if L is contained in a radical extension of \mathbb{Q}.

However, L is a radical extension of \mathbb{Q}.
Recall that a radical extension is one in which $\mathbb{Q}=K_{1} \subset K_{2} \subset \cdots \subset K_{n}=L$ with $K_{i}=K_{i-1}\left(\alpha_{i}\right)$ for all i for α_{i} satisfying that there exists t with $\alpha_{i}^{t} \in K_{i-1}$.
Therefore, since

$$
\mathbb{Q} \subset \mathbb{Q}(\xi) \subset \mathbb{Q}(\sqrt{5}, \xi) \subset \mathbb{Q}(\sqrt{5}, \alpha, \xi) \subset \mathbb{Q}(\sqrt{5}, \alpha, \beta, \xi)=L
$$

and

$$
\begin{aligned}
(\beta)^{5} & =3-\alpha^{5} \in \mathbb{Q}(\sqrt{5}, \alpha, \xi) \\
(\alpha)^{5} & =\frac{-3+\sqrt{5}}{2} \in \mathbb{Q}(\sqrt{5}, \xi) \\
(\sqrt{5})^{2} & =5 \in \mathbb{Q}(\xi) \\
(\xi)^{5} & =1 \in \mathbb{Q}
\end{aligned}
$$

we have that L is a radical extension.
Therefore, G is solvable.

