Kayla Orlinsky
 Algebra Exam Fall 2011

Problem 1. Let I and J be ideals of $R=\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ that define the same variety of \mathbb{C}^{n}. Show that for any $x \in(I+J) / I$ there is $m=m(x)>0$ with $x^{m}=0_{R / I}$. Show that there is an integer $M>0$ so that for any $y_{1}, y_{2}, \ldots, y_{M} \in(I+J) / I, y_{1} y_{2} \cdots y_{m}=0_{R / I}$.

Solution. To do this, we simply note the following claim.
Claim 1. for I, J ideals of $k\left[x_{1}, \ldots, x_{n}\right], V(I+J)=V(I) \cap V(J)$

Proof. \supset Let $\alpha \in V(I) \cap V(J)$. Then $f(\alpha)=0$ for all $f \in I$ and $g(\alpha)=0$ for all $g \in J$.

However,

$$
I+J=\left\{\sum_{i=1}^{k} f_{i} g_{i} \mid f_{i} \in I, g_{i} \in J\right\}
$$

Therefore, since f_{i} vanish and g_{i} vanish at α for all i, we get that anyh $\in I+J$ will also vanish at α.

Namely, $V(I+J) \supset V(I) \cap V(J)$.
\subset Since $I \subset I+J$ and $J \subset I+J, V(I+J) \subset V(I)$ and $V(I+J) \subset V(J)$. Therefore, $V(I+J) \subset V(I) \cap V(J)$.

Now, by the Claim 1,
$V(I+J)=V(I) \cap V(J)=V(I) \cap V(I)=V(I) \quad V(I)=V(J)$ by assumption.
Therefore, if $f(x) \in I+J$, then for all $\alpha \in V(I), \alpha \in V(I+J)$ and so $f(\alpha)=0$.
Thus, by Nullstellenzatz Part II, there exists an $m>0$ such that $f^{m} \in I$.
Namely, if $\bar{f} \in(I+J) / I$, there exists m such that $\bar{f}=0 \in R / I$.
Finally, since R is Noetherian by the Hilbert Basis Theorem, all ideals of R are finitely generated.

Therefore, if $J=\left(f_{1}(x), \ldots, f_{n}(x)\right)$ we can let $m_{i}, i=1, \ldots, n$ be the values found earlier such that $f_{i}^{m_{i}}(x) \in I$ for all i. Let $m=\max \left\{m_{i}\right\}$.

We would like to show that $[(I+J) / I]^{n m}=0$. Note that

$$
[(I+J) / I]^{n m} \cong[J /(I \cap J)]^{n m} \cong J^{n m} /(I \cap J)
$$

by the second isomorphism theorem.
Now, we can let

$$
J=R f_{1}(x) \oplus \cdots \oplus R f_{n}(x)
$$

Then

$$
J^{n m}=\bigoplus_{r_{1}+\cdots+r_{n}=n m} R f_{1}^{r_{1}}(x) \cdots f_{n}^{r_{n}}(x)
$$

Since $r_{1}+\cdots+r_{n}=n m$, there must exist some $r_{i} \geq m$. Otherwise, $r_{1}+\cdots+r_{n}<n m$. However, then $f_{i}^{r_{i}}(x) \in I$ by the above and so then $J^{n m} \subset I \cap J$ and so namely,

$$
J^{n m} /(I \cap J) \cong[(I+J) / I]^{n m}=0 \in R / I
$$

Therefore, $M=n m$ is such that any product of M things in $(I+J) / I$ will be trivial.

Problem 2. . If $K \subset L$ are finite fields with $|K|=p^{n}$ and $[L: K]=m$ then show that for each $1 \leq t<n m$, any $a \in L-K$ has a p^{t}-th root in L. When $m=3$, show that every $b \in K$ has a cube root in L .

Solution. Since $|L|=p^{n m} L$ is the splitting field of $x^{p^{n m}}-x$.
Therefore, for all $a \in L$ and for all $1 \leq t<n m$

$$
a=a^{p^{m}}=a^{p^{n m-t} p^{t}}=\left(a^{p^{n m-t}}\right)^{p^{t}} .
$$

Now, let $m=3$, and let $b \in K$.
Then we can let

$$
\begin{aligned}
\varphi: L^{\times} & \rightarrow L^{\times} \\
a & \mapsto a^{3}
\end{aligned}
$$

Since $L^{\times} \cong\langle a\rangle$ is a cyclic group of order $p^{3 n}-1$, we have two cases. First, if 3 is coprime to $p^{3 n}-1$, then φ is a group isomorphism. Namely, every element of L (and thus K) has a cube root in L.

If 3 is not coprime to $p^{3 n}-1$, then $3 \mid\left(p^{3 n}-1\right)$ so $p^{3 n}=3 t+1$ some t.
Now, we want to show that $K^{\times} \subset \varphi\left(L^{\times}\right)$since this will show that every $b \in K$ can be written as some $\left(a^{x}\right)^{3}$ for $a^{x} \in L$.

Now, if $a^{x} \in \operatorname{ker} \varphi$, then $\left(a^{x}\right)^{3}=a^{3 x}=1$. However, then $\frac{p^{3 n}-1}{3}$ divides x since the order of a is $p^{3 n}-1$. The converse is clearly also true. Thus, $x=0, \frac{p^{3 n}-1}{3}, 2 \frac{p^{3 n}-1}{3}$ and these are the only possibilities. Namely,

$$
\left|\varphi\left(L^{\times}\right)\right|=\frac{\left|L^{\times}\right|}{|\operatorname{ker} \varphi|}=\frac{p^{3 n}-1}{3}
$$

Now, since $\varphi\left(L^{\times}\right)=\left\langle a^{x}\right\rangle$ is also cyclic, letting $K^{\times}=\left\langle a^{y}\right\rangle$ for some y, we have that $K^{\times} \subset \varphi\left(L^{\times}\right)$if $x \mid y$.

Claim 2. x divides y if and only if $\left(p^{n}-1\right)$ divides $\frac{p^{3 n}-1}{3}$.
Proof. \Rightarrow If $x \mid y$ then $K^{\times} \subset \varphi\left(L^{\times}\right)$and so $\left|K^{\times}\right|=p^{n}-1$ must divide $\left|\varphi\left(L^{\times}\right)\right|=\frac{p^{3 n}-1}{3}$.
\Longleftarrow Assume $\left(p^{n}-1\right)$ divides $\frac{p^{3 n}-1}{3}$. Then the order of a^{y} divides the order of a^{x}.

Namely,

$$
\left(a^{x}\right)^{\frac{p^{3 n}-1}{3}}=\left(a^{x}\right)^{\left(p^{n}-1\right) t}=\left(a^{x t}\right)^{p^{n}-1}=1=\left(a^{y}\right)^{p^{n}-1}
$$

for some t.
And so the order of $a^{x t}$ is $p^{n}-1$ as well. Thus, $\left\langle a^{x t}\right\rangle=\left\langle a^{y}\right\rangle$ and so $x \mid y$. \quad B
From the claim, we need only show that $\left(p^{n}-1\right)$ divides $\frac{p^{3 n}-1}{3}$.
However, $\frac{p^{3 n}-1}{3}=\frac{\left(p^{n}-1\right)\left(p^{2 n}+p^{n}+1\right)}{3}$.
If $3 \mid\left(p^{2 n}+p^{n}+1\right)$ then we are done, so assume not.
Then $3 \mid\left(p^{n}-1\right)$. Namely, $p^{n} \equiv 1 \bmod 3$. So $p^{2 n}+p^{n}+1 \equiv 1+1+1 \equiv 0 \bmod 3$ and so again, $3 \mid\left(p^{2 n}+p^{n}+1\right)$.

Therefore, $p^{n}-1$ divides $\left(p^{n}-1\right) \frac{p^{2 n}+p^{n}+1}{3}$ and so $K^{\times} \subset \varphi\left(L^{\times}\right)$is a subgroup.
Finally, this gives that for every $b \in K, b$ has a cube root in L.

Problem 3. Let F be an algebraically closed field and A an F-algebra with $\operatorname{dim}_{F} A=n$. If every element of A is either nilpotent or invertible, show that the set of nilpotent elements of A is an ideal M of A, that M is the unique maximal ideal of A, and that $\operatorname{dim}_{F} M=n-1$.

Solution. Let M be the set of nilpotent elements of A. Namely, M is the nilradical of $A . \quad M$ is always an ideal since A is commutative (being an algebra) and so if $x, y \in M$ with $x^{s}=0$ and $y^{t}=0$, then $(x-y)^{s t}=0$ and so $x-y \in M$. Similarly, if $a \in A$ then $(a x)^{s}=a^{s} x^{s}=0$ so $a x \in M$.

Thus, M is an ideal.
Now, let $M \subsetneq M^{\prime} \subset A$ with M^{\prime} another ideal of A.
Then let $x \in M^{\prime}$ and $x \notin M$. Since x is not nilpotent, it is invertible. Therefore, $x^{-1} x=1 \in M^{\prime}$ and so $M^{\prime}=A$.

Thus, M is maximal.
Using this same argument, we get that M must be unique, since any other element not in M is invertible and so cannot be contained in any proper ideal.

Finally, since A / M is a field, it is a field extension of F. However, since F is algebraically closed, $A / M \cong F$.

Therefore,

$$
1=\operatorname{dim}_{F}(A / M)=\operatorname{dim}_{F} A-\operatorname{dim}_{F} M=n-\operatorname{dim}_{F} M \Longrightarrow \operatorname{dim}_{F} M=n-1
$$

Problem 4. Let M be a finitely generated $F[x]$ module, for F a field.
(a) Show that if $f(x) m=0$ for $f(x) \neq 0$ forces $m=0$, then M is a projective $F[x]$ module.
(b) If H is an $F[x]$ submodule of M show that $M=H \oplus K$ for a submodule K of M if and only if: $f(x) m \in H$ for $f(x) \neq 0$ implies $m \in H$.

Solution.

(a) Since M is finitely generated over $F[x]$ which is a PID, we may apply the structure theorem. Note also that because $F[x]$ is a PID, projective is equivalent to free.
Thus, by the structure theorem,

$$
M \cong P \oplus T(M)
$$

with P the free part of M and $T(M)$ the torsion part.
Now, let $m \in T(m)$. Then there exists $f(x) \in F[x]$ with $f(x) \neq 0$ such that $f(x) m=0$. However, by assumption, this implies that $m=0$.
Thus, $T(M)=0$ and so $M \cong P$ for some free module P. Therefore, M is free and so it is projective.
(b) \Longrightarrow Assume H is an $F[x]$ submodule of M.

Further, assume that $M=H \oplus K$ for a submodule K of M.
Because M is free, H is free, and so $H \cap K=(0)$ because H is projective.
Now, let $f(x) m \in H$ for $f(x) \neq 0$. If $m \notin H$, then $m \in K$ because $M=H \oplus K$ and $H \cap K=(0)$.
However, then $f(x) m \in K$ because K is a submodule, which is a contradiction.
Thus, $m \in H$.
\Longleftarrow Assume if $f(x) m \in H$ and $f(x) \neq 0$, then $m \in H$.
Then, by (a), H is projective, and so letting $\varphi: M \rightarrow H$ be any surjective homomorphism, (which exists since both M and H are free and have bases over $F[x]$) we get a short exact sequence of the form

$$
0 \longrightarrow K \longrightarrow M \longrightarrow H \longrightarrow 0
$$

where $K=\operatorname{ker} \varphi$.
Since H is projective, the sequence is split and $M \cong H \oplus K$ so we are done.

Problem 5. Up to isomorphism, describe the possible structures of any group of order $987=3 \cdot 7 \cdot 47$.

Solution. Abelian There is an abelian group of order 987 isomorphic to

$$
G \cong \mathbb{Z}_{3} \times \mathbb{Z}_{7} \times \mathbb{Z}_{47}
$$

Now, for G non-abelian, using the Sylow theorems it is immediate that $n_{47}=1$ since $n_{47} \mid 21$ and $n_{47} \equiv 1 \bmod 47$ so $n_{47}=1$.

Thus, G has a normal Sylow 47-subgroup. Let P_{47} be the normal Sylow 47-subgroup, and P_{3}, P_{7} be Sylow 3 -subgroups and Sylow 7 -subgroups.

Claim 3. If N is normal in G and P is a normal Sylow p-subgroup of N, then P is normal in G.

Proof. Let N be normal in G and P be a normal Sylow p-subgroup of N.
Let $g \in G$. Then $g N g^{-1}=N$, therefore, since P is a subgroup of N, $g P g^{-1} \subset N$.

Therefore, if $p \in P, g p g^{-1}=n \in N$. However, conjugation is an automorphism and preserves order, so $n \in N$ has order dividing $|P|$. Thus, n lies in some Sylow p-subgroup of N. However, since P is normal in N, P is the only Sylow p-subgroup of N and so $n \in P$.

Thus, $G=N_{G}(P)$.
Therefore, since P_{47} is normal, $P_{7} P_{47}$ is a subgroup of G and since it has index 3 which is the smallest prime dividing the order of G, it is normal by Spring 2010: Problem 2

Claim 1.

Clearly P_{7} is normal in $P_{7} P_{47}$ since $n_{7} \mid 47$ and $n_{7} \equiv 1 \bmod 7$ so $n_{7}=1$ so by Claim 3, P_{7} is normal in G.
$P_{47} \rtimes P_{3} \times P_{7}$. Let $\varphi: P_{3} P_{7} \rightarrow \operatorname{Aut}\left(P_{47}\right)$. Since $P_{47} \cong \mathbb{Z}_{47}$,

$$
\varphi: \mathbb{Z}_{21} \rightarrow \mathbb{Z}_{47}^{\times} \cong \mathbb{Z}_{46}
$$

Since \mathbb{Z}_{46} has no elements of order 3 or order $7, \varphi$ can only be the trivial homomorphism and this gives no new group structures aside from the abelian one.

Now, since P_{47} is normal, $P_{47} P_{3}$ and $P_{47} P_{7}$ are subgroups of G.
$P_{3} \rtimes P_{7} \times P_{47}$ if $P_{3} \unlhd G$, then by similar arguments as before, $G \cong P_{3} \rtimes P_{7} \times P_{47}$.
Let

$$
\varphi: \mathbb{Z}_{7 \cdot 47} \rightarrow \operatorname{Aut}\left(P_{3}\right) \cong \mathbb{Z}_{2}
$$

Since there are no order 2 elements in $\mathbb{Z}_{7.47}$ this gives nothing interesting. $P_{7} \times P_{47} \rtimes P_{3}$ Since 3 is the smallest prime dividing $|G|$, and $\left[G: P_{7} P_{47}\right]=3$, and $P_{7} P_{47} \cong P_{7} \times P_{47}$ is subgroup of G, and it is normal by Spring 2010, Problem 2, Claim 1.

Let

$$
\varphi: P_{3} \rightarrow \operatorname{Aut}\left(P_{7} \times P_{47}\right) \cong \operatorname{Aut}\left(P_{7}\right) \times \operatorname{Aut}\left(P_{47}\right) \cong \mathbb{Z}_{6} \times \mathbb{Z}_{46}
$$

There are exactly two elements of order 3 in $\mathbb{Z}_{6} \times \mathbb{Z}_{46}$, namely $(2,0)$ and $(4,0)$.
Thus, we have two non-trivial homomorphisms, $\varphi_{1}(1)=(2,0)$ and $\varphi_{2}(1)=(4,0)$.
Let $P_{3} \cong\langle a\rangle$ and $P_{7} \times P_{47} \cong\langle b\rangle \times\langle c\rangle$.
Then $(2,0)$ and $(4,0)$ correspond to the maps ψ_{1} and ψ_{2} respectively, with

$$
\begin{aligned}
\psi_{1}:\langle b\rangle \times\langle c\rangle & \rightarrow\langle b\rangle \times\langle c\rangle & \psi_{2}:\langle b\rangle \times\langle c\rangle & \rightarrow\langle b\rangle \times\langle c\rangle \\
(b, c) & \mapsto\left(b^{2}, c\right) & (b, c) & \mapsto\left(b^{4}, c\right)
\end{aligned}
$$

It is crucial to note that $\psi_{2}=\psi_{1}^{2}$.
Thus, if

$$
\begin{aligned}
\gamma: P_{3} & \rightarrow P_{3} \\
a & \mapsto a^{2}
\end{aligned}
$$

then γ is an automorphism of P_{3} since a^{2} also a generator of P_{3} and since $\varphi_{2}=\varphi_{1} \circ \gamma$, we get that φ_{2} and φ_{1} define isomorphic semi-direct products.

Thus, the multiplication for φ_{1} is $a b a^{-1}=\varphi_{1}(a)(b)=\psi_{1}(b)=b^{2}$ and $a c a^{-1}=\varphi_{1}(a)(c)=$ $\psi_{1}(c)=c$.

And so we get one group,

$$
G \cong \mathbb{Z}_{7} \times \mathbb{Z}_{47} \rtimes_{\varphi_{1}} \mathbb{Z}_{3}=\left\langle a, b, c \mid a^{3}=b^{7}=c^{47}=1, a c=c a, b c=c b, a b=b^{2} a\right\rangle
$$

$P_{3} \times P_{47} \rtimes P_{7}$ If P_{3} is normal, then $P_{3} \times P_{47}$ is a normal subgroup of G and so we can examine

$$
\varphi: P_{7} \rightarrow \operatorname{Aut}\left(P_{3} \times P_{47}\right) \cong \mathbb{Z}_{2} \times \mathbb{Z}_{46}
$$

However, again, no non-trivial homomorphism exists.
$P_{7} \rtimes P_{3} \times P_{47}$ If P_{7} is normal, then we can look at

$$
\varphi: \mathbb{Z}_{3} \times \mathbb{Z}_{47} \rightarrow \operatorname{Aut}\left(P_{7}\right) \cong \mathbb{Z}_{6}
$$

However, this will give two non-trivial homomorphisms, $\varphi_{1}(1)=(2)$ and $\varphi_{2}(1)=4$.
Since these automorphisms are given by $\psi_{1}(b)=b^{2}$ and $\psi_{2}(b)=b^{4}$, we quickly see that both of these yield the same multiplicative structure as before.

Namely, for φ_{1} we get $a b a^{-1}=b^{2}$ and $c b c^{-1}=b$ and for φ_{2} we get $a b a^{-1}=b^{4}$ and $c b c^{-1}=b$ and $a c=c a$. These were already described in an earlier case.
$P_{3} \times P_{7} \rtimes P_{47}$ If $P_{3} \times P_{7}$ is normal, then we can examine

$$
\varphi: P_{47} \rightarrow \operatorname{Aut}\left(P_{3} \times P_{7}\right) \cong \mathbb{Z}_{2} \times \mathbb{Z}_{6}
$$

Clear this forces φ to be trivial.
Therefore, there are exactly 2 possible groups up to isomorphism.

$$
\begin{gathered}
\mathbb{Z}_{3} \times \mathbb{Z}_{7} \times \mathbb{Z}_{47} \\
\left\langle a, b, c \mid a^{3}=b^{7}=c^{47}=1, a c=c a, b c=c b, a b=b^{2} a\right\rangle
\end{gathered}
$$

Problem 6. Let $R=\mathbb{Z}\left[x_{1}, x_{2}, \ldots ., x_{n}, \ldots\right]$ and let $\left\{f_{i}(X) \mid i \geq 1\right\} \subseteq R$ satisfy

$$
f_{1}(X) R \subseteq f_{2}(X) R \subseteq \cdots \subseteq f_{t}(X) R \subseteq \cdots
$$

Show that $f_{s}(X) R=f_{m}(X) R$ for some m and all $s \geq m$.

Solution. Since each f_{i} is a polynomial, we may take each f_{i} to be comprised of a finite number of variables.

Namely, $f_{1} \subset \mathbb{Z}\left[x_{k_{1}}, \ldots, x_{k_{n_{1}}}\right]$ for some k_{j}.
Now, $\left(f_{1}(X)\right) \subset\left(f_{2}(X)\right)$ and so there exists $g_{2}(X)$ such that $f_{1}(X)=f_{2}(X) g_{2}(X)$.
Now, since \mathbb{Z} is a UFD, $\mathbb{Z}\left[x_{k_{1}}, \ldots, x_{k_{n_{1}}}\right]$ is also a UFD, and so f_{1} can be uniquely factored into irreducibles (which are primes in a UFD), $f_{1}=p_{1} \cdots p_{t}$.

Then, since

$$
f_{1}(X)=p_{1}(X) \cdots p_{t}(X)=f_{2}(X) g_{2}(X)
$$

we get that $f_{2} g_{2} \in \mathbb{Z}\left[x_{k_{1}}, \ldots, x_{k_{n_{1}}}\right]$ and so each p_{j} divides either f_{2} or g_{2}
Namely, $f_{2}(X) \in \mathbb{Z}\left[x_{k_{1}}, \ldots, x_{k_{n_{1}}}\right]$.
Therefore, inductively, we get that $f_{i}(X) \in \mathbb{Z}\left[x_{k_{1}}, \ldots, x_{k_{n_{1}}}\right]$ for all i and so namely, if $R^{\prime}=\mathbb{Z}\left[x_{k_{1}}, \ldots, x_{k_{n_{1}}}\right]$, then we can write

$$
f_{1}(X) R^{\prime} \supset f_{2}(X) R^{\prime} \supset \cdots
$$

Since \mathbb{Z} is Noetherian, by the Hilbert Basis Theorem, $R^{\prime}=\mathbb{Z}\left[x_{k_{1}}, \ldots, x_{k_{n_{1}}}\right]$ is also Noetherian and so the chain must terminate at some finite m.

Since $\left(f_{m}(X)\right)=\left(f_{n}(X)\right) \subset R^{\prime} \subset R$ for all $n \geq m$, we are done.

Problem 7. Let U be the set of all n-th roots of unity in \mathbb{C}, for all $n \geq 3$, and set $F=$ $\mathbb{Q}(U)$. For primes $p_{1}<\cdots<p_{k}$ and nonzero $a_{1}, \ldots, a_{k} \in \mathbb{Q}$, set $M=F\left(a_{1}^{1 / p_{1}}, \ldots, a_{k}^{1 / p_{k}}\right) \subseteq$ \mathbb{C}. Show that M is Galois over F with a cyclic Galois group. For any subfield $F \subseteq L \subseteq M$, show that there is a subset T of $\left\{a_{j}^{1 / p_{j}}\right\}$ so that $L=F(T)$.

Solution. $\quad M$ is Galois over F if M is the splitting field of a separable polynomial over F.
Since $a_{i}^{1 / p_{i}}$ has minimal polynomial $f_{i}(x)=x^{p_{i}}-a_{i}$, which has roots $\xi_{i}^{l} a_{i}^{1 / p_{i}}$ for ξ_{i} a $p_{i}^{t h}$ root of unity and $0 \leq l \leq p_{i}-1, f_{i}$ splits completely in M.

Therefore, M is the splitting field of $\prod_{i=1}^{k} f_{i}(x)$ which is a polynomial over F. Thus, M is Galois over F.

Note that $[M: F] \leq \prod_{i=1}^{k} p_{i}$. However,

$$
[M: F]=\left[M: F\left(a_{i}^{1 / p_{i}}\right)\right]\left[F\left(a_{i}^{1 / p_{i}}\right): F\right]=\left[M: F\left(a_{i}^{1 / p_{i}}\right)\right] p_{i}
$$

and so $p_{i} \mid[M: F]$ for all $i=1, \ldots, k$. Therefore, $[M: F]=p_{1} \cdots p_{k}$.
Now, let $G=\operatorname{Gal}(M / F)$. Using the same logic, we obtain that

$$
K=F\left(a_{1}^{1 / p_{1}}, \ldots, a_{i-1}^{1 / p_{i-1}}, a_{i+1}^{1 / p_{i+1}}, \ldots, a_{k}^{1 / p_{k}}\right) \text { is Galois over } F
$$

and since $[M: K]=p_{i}, G$ has a normal subgroup of order p_{i}. Namely, G has a normal Sylow p_{i}-subgroup for all i.

This is only possible if G is abelian and so

$$
G \cong \mathbb{Z}_{p_{1}} \times \cdots \times \mathbb{Z}_{p_{k}} \cong \mathbb{Z}_{p_{1} \cdots p_{k}} \quad \text { cyclic. }
$$

Finally, let $F \subset L \subset M$.
Then L corresponds to some subgroup of G. However, the subgroups of G correspond exactly to products of the $\mathbb{Z}_{p_{i}}$. Thus, if L corresponds to $\mathbb{Z}_{p_{i_{1}}} \times \cdots \times \mathbb{Z}_{p_{i_{l}}}$ with $l \leq k$, then $L=F\left(a_{i_{1}}^{1 / p_{i_{1}}}, \ldots, a_{i_{l}}^{1 / p_{i_{l}}}\right)$.

