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Problem 1. Let I and J be ideals of R = C[x1, x2, ..., xn] that define the same variety of
Cn. Show that for any x ∈ (I + J)/I there is m = m(x) > 0 with xm = 0R/I . Show that
there is an integer M > 0 so that for any y1, y2, ..., yM ∈ (I + J)/I, y1y2 · · · ym = 0R/I .

Solution. To do this, we simply note the following claim.

Claim 1. for I, J ideals of k[x1, ..., xn], V (I + J) = V (I) ∩ V (J)

Proof. ⊃ Let α ∈ V (I) ∩ V (J). Then f(α) = 0 for all f ∈ I and g(α) = 0 for
all g ∈ J .

However,

I + J = {
k∑

i=1
figi | fi ∈ I, gi ∈ J}.

Therefore, since fi vanish and gi vanish at α for all i, we get that anyh ∈ I + J
will also vanish at α.

Namely, V (I + J) ⊃ V (I) ∩ V (J).
⊂ Since I ⊂ I + J and J ⊂ I + J , V (I + J) ⊂ V (I) and V (I + J) ⊂ V (J).

Therefore, V (I + J) ⊂ V (I) ∩ V (J). �

Now, by the Claim 1,

V (I + J) = V (I) ∩ V (J) = V (I) ∩ V (I) = V (I) V (I) = V (J) by assumption.

Therefore, if f(x) ∈ I + J , then for all α ∈ V (I), α ∈ V (I + J) and so f(α) = 0.
Thus, by Nullstellenzatz Part II, there exists an m > 0 such that fm ∈ I.
Namely, if f ∈ (I + J)/I, there exists m such that f = 0 ∈ R/I.
Finally, since R is Noetherian by the Hilbert Basis Theorem, all ideals of R are finitely

generated.
Therefore, if J = (f1(x), ..., fn(x)) we can let mi, i = 1, ..., n be the values found earlier

such that fmi
i (x) ∈ I for all i. Let m = max{mi}.

We would like to show that [(I + J)/I]nm = 0. Note that

[(I + J)/I]nm ∼= [J/(I ∩ J)]nm ∼= Jnm/(I ∩ J)
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by the second isomorphism theorem.
Now, we can let

J = Rf1(x)⊕ · · · ⊕Rfn(x).

Then
Jnm =

⊕
r1+···+rn=nm

Rf r1
1 (x) · · · f rn

n (x).

Since r1 + · · ·+ rn = nm, there must exist some ri ≥ m. Otherwise, r1 + · · ·+ rn < nm.
However, then f ri

i (x) ∈ I by the above and so then Jnm ⊂ I ∩ J and so namely,

Jnm/(I ∩ J) ∼= [(I + J)/I]nm = 0 ∈ R/I.

Therefore, M = nm is such that any product of M things in (I + J)/I will be trivial.
�
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Problem 2. . If K ⊂ L are finite fields with |K| = pn and [L : K] = m then show that
for each 1 ≤ t < nm, any a ∈ L−K has a pt-th root in L. When m = 3, show that every
b ∈ K has a cube root in L.

Solution. Since |L| = pnm L is the splitting field of xpnm − x.
Therefore, for all a ∈ L and for all 1 ≤ t < nm

a = apm = apnm−tpt =
(
apnm−t

)pt

.

Now, let m = 3, and let b ∈ K.
Then we can let

ϕ : L× → L×

a 7→ a3

Since L× ∼= 〈a〉 is a cyclic group of order p3n− 1, we have two cases. First, if 3 is coprime
to p3n − 1, then ϕ is a group isomorphism. Namely, every element of L (and thus K) has a
cube root in L.

If 3 is not coprime to p3n − 1, then 3|(p3n − 1) so p3n = 3t+ 1 some t.
Now, we want to show that K× ⊂ ϕ(L×) since this will show that every b ∈ K can be

written as some (ax)3 for ax ∈ L.

Now, if ax ∈ kerϕ, then (ax)3 = a3x = 1. However, then p3n−1
3 divides x since the order

of a is p3n − 1. The converse is clearly also true. Thus, x = 0, p3n−1
3 , 2p3n−1

3 and these are the
only possibilities. Namely,

|ϕ(L×)| = |L×|
| kerϕ| = p3n − 1

3 .

Now, since ϕ(L×) = 〈ax〉 is also cyclic, letting K× = 〈ay〉 for some y, we have that
K× ⊂ ϕ(L×) if x|y.

Claim 2. x divides y if and only if (pn − 1) divides p3n−1
3 .

Proof. =⇒ If x|y then K× ⊂ ϕ(L×) and so |K×| = pn − 1 must divide
|ϕ(L×)| = p3n−1

3 .

⇐= Assume (pn − 1) divides p3n−1
3 . Then the order of ay divides the

order of ax.
Namely,

(ax)
p3n−1

3 = (ax)(pn−1)t = (axt)pn−1 = 1 = (ay)pn−1
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for some t.
And so the order of axt is pn − 1 as well. Thus, 〈axt〉 = 〈ay〉 and so x|y. �

From the claim, we need only show that (pn − 1) divides p3n−1
3 .

However, p3n−1
3 = (pn−1)(p2n+pn+1)

3 .
If 3|(p2n + pn + 1) then we are done, so assume not.
Then 3|(pn − 1). Namely, pn ≡ 1 mod 3. So p2n + pn + 1 ≡ 1 + 1 + 1 ≡ 0 mod 3 and

so again, 3|(p2n + pn + 1).
Therefore, pn − 1 divides (pn − 1)p2n+pn+1

3 and so K× ⊂ ϕ(L×) is a subgroup.
Finally, this gives that for every b ∈ K, b has a cube root in L. �
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Problem 3. Let F be an algebraically closed field and A an F -algebra with dimF A = n.
If every element of A is either nilpotent or invertible, show that the set of nilpotent
elements of A is an ideal M of A, that M is the unique maximal ideal of A, and that
dimF M = n− 1.

Solution. Let M be the set of nilpotent elements of A. Namely, M is the nilradical of
A. M is always an ideal since A is commutative (being an algebra) and so if x, y ∈ M
with xs = 0 and yt = 0, then (x − y)st = 0 and so x − y ∈ M. Similarly, if a ∈ A then
(ax)s = asxs = 0 so ax ∈M .

Thus, M is an ideal.
Now, let M (M ′ ⊂ A with M ′ another ideal of A.
Then let x ∈ M ′ and x /∈ M . Since x is not nilpotent, it is invertible. Therefore,

x−1x = 1 ∈M ′ and so M ′ = A.
Thus, M is maximal.
Using this same argument, we get that M must be unique, since any other element not

in M is invertible and so cannot be contained in any proper ideal.
Finally, since A/M is a field, it is a field extension of F . However, since F is algebraically

closed, A/M ∼= F .
Therefore,

1 = dimF (A/M) = dimF A− dimF M = n− dimF M =⇒ dimF M = n− 1.

�
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Problem 4. Let M be a finitely generated F [x] module, for F a field.

(a) Show that if f(x)m = 0 for f(x) 6= 0 forces m = 0, then M is a projective F [x]
module.

(b) If H is an F [x] submodule of M show that M = H ⊕K for a submodule K of M
if and only if: f(x)m ∈ H for f(x) 6= 0 implies m ∈ H.

Solution.

(a) Since M is finitely generated over F [x] which is a PID, we may apply the structure
theorem. Note also that because F [x] is a PID, projective is equivalent to free.
Thus, by the structure theorem,

M ∼= P ⊕ T (M)

with P the free part of M and T (M) the torsion part.
Now, let m ∈ T (m). Then there exists f(x) ∈ F [x] with f(x) 6= 0 such that f(x)m = 0.
However, by assumption, this implies that m = 0.
Thus, T (M) = 0 and so M ∼= P for some free module P . Therefore, M is free and so it
is projective.

(b) =⇒ Assume H is an F [x] submodule of M .
Further, assume that M = H ⊕K for a submodule K of M .
Because M is free, H is free, and so H ∩K = (0) because H is projective.
Now, let f(x)m ∈ H for f(x) 6= 0. If m /∈ H, then m ∈ K because M = H ⊕K and
H ∩K = (0).
However, then f(x)m ∈ K because K is a submodule, which is a contradiction.
Thus, m ∈ H.
⇐= Assume if f(x)m ∈ H and f(x) 6= 0, then m ∈ H.

Then, by (a), H is projective, and so letting ϕ : M → H be any surjective homomor-
phism, (which exists since both M and H are free and have bases over F [x]) we get a
short exact sequence of the form

0 K M H 0

where K = kerϕ.
Since H is projective, the sequence is split and M ∼= H ⊕K so we are done.

�
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Problem 5. Up to isomorphism, describe the possible structures of any group of order
987 = 3 · 7 · 47.

Solution. Abelian There is an abelian group of order 987 isomorphic to

G ∼= Z3 × Z7 × Z47.

Now, for G non-abelian, using the Sylow theorems it is immediate that n47 = 1 since
n47|21 and n47 ≡ 1 mod 47 so n47 = 1.

Thus, G has a normal Sylow 47-subgroup. Let P47 be the normal Sylow 47-subgroup,
and P3, P7 be Sylow 3-subgroups and Sylow 7-subgroups.

Claim 3. If N is normal in G and P is a normal Sylow p-subgroup of N , then
P is normal in G.

Proof. Let N be normal in G and P be a normal Sylow p-subgroup of N .
Let g ∈ G. Then gNg−1 = N , therefore, since P is a subgroup of N ,

gPg−1 ⊂ N .
Therefore, if p ∈ P , gpg−1 = n ∈ N . However, conjugation is an automor-

phism and preserves order, so n ∈ N has order dividing |P |. Thus, n lies in
some Sylow p-subgroup of N. However, since P is normal in N, P is the only
Sylow p-subgroup of N and so n ∈ P .

Thus, G = NG(P ). �

Therefore, since P47 is normal, P7P47 is a subgroup of G and since it has index 3 which
is the smallest prime dividing the order of G, it is normal by Spring 2010: Problem 2
Claim 1.

Clearly P7 is normal in P7P47 since n7|47 and n7 ≡ 1 mod 7 so n7 = 1 so by Claim 3,
P7 is normal in G.

P47 o P3 × P7 . Let ϕ : P3P7 → Aut(P47). Since P47 ∼= Z47,

ϕ : Z21 → Z×47
∼= Z46.

Since Z46 has no elements of order 3 or order 7, ϕ can only be the trivial homomorphism
and this gives no new group structures aside from the abelian one.

Now, since P47 is normal, P47P3 and P47P7 are subgroups of G.
P3 o P7 × P47 if P3 E G, then by similar arguments as before, G ∼= P3 o P7 × P47.
Let

ϕ : Z7·47 → Aut(P3) ∼= Z2.
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Since there are no order 2 elements in Z7·47 this gives nothing interesting.
P7 × P47 o P3 Since 3 is the smallest prime dividing |G|, and [G : P7P47] = 3, and

P7P47 ∼= P7 × P47 is subgroup of G, and it is normal by Spring 2010, Problem 2, Claim
1.

Let
ϕ : P3 → Aut(P7 × P47) ∼= Aut(P7)× Aut(P47) ∼= Z6 × Z46.

There are exactly two elements of order 3 in Z6 × Z46, namely (2, 0) and (4, 0).
Thus, we have two non-trivial homomorphisms, ϕ1(1) = (2, 0) and ϕ2(1) = (4, 0).
Let P3 ∼= 〈a〉 and P7 × P47 ∼= 〈b〉 × 〈c〉.
Then (2, 0) and (4, 0) correspond to the maps ψ1 and ψ2 respectively, with

ψ1 : 〈b〉 × 〈c〉 → 〈b〉 × 〈c〉
(b, c) 7→ (b2, c)

ψ2 : 〈b〉 × 〈c〉 → 〈b〉 × 〈c〉
(b, c) 7→ (b4, c)

It is crucial to note that ψ2 = ψ2
1.

Thus, if

γ : P3 → P3

a 7→ a2

then γ is an automorphism of P3 since a2 also a generator of P3 and since ϕ2 = ϕ1 ◦ γ, we
get that ϕ2 and ϕ1 define isomorphic semi-direct products.

Thus, the multiplication for ϕ1 is aba−1 = ϕ1(a)(b) = ψ1(b) = b2 and aca−1 = ϕ1(a)(c) =
ψ1(c) = c.

And so we get one group,

G ∼= Z7 × Z47 oϕ1 Z3 = 〈a, b, c | a3 = b7 = c47 = 1, ac = ca, bc = cb, ab = b2a〉

P3 × P47 o P7 If P3 is normal, then P3 × P47 is a normal subgroup of G and so we can
examine

ϕ : P7 → Aut(P3 × P47) ∼= Z2 × Z46.

However, again, no non-trivial homomorphism exists.
P7 o P3 × P47 If P7 is normal, then we can look at

ϕ : Z3 × Z47 → Aut(P7) ∼= Z6

However, this will give two non-trivial homomorphisms, ϕ1(1) = (2) and ϕ2(1) = 4.
Since these automorphisms are given by ψ1(b) = b2 and ψ2(b) = b4, we quickly see that

both of these yield the same multiplicative structure as before.
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Namely, for ϕ1 we get aba−1 = b2 and cbc−1 = b and for ϕ2 we get aba−1 = b4 and
cbc−1 = b and ac = ca. These were already described in an earlier case.

P3 × P7 o P47 If P3 × P7 is normal, then we can examine

ϕ : P47 → Aut(P3 × P7) ∼= Z2 × Z6.

Clear this forces ϕ to be trivial.
Therefore, there are exactly 2 possible groups up to isomorphism.

Z3 × Z7 × Z47

〈a, b, c | a3 = b7 = c47 = 1, ac = ca, bc = cb, ab = b2a〉

�

9



Kayla Orlinsky
Fall 2011

Problem 6. Let R = Z[x1, x2, ...., xn, ...] and let {fi(X) | i ≥ 1} ⊆ R satisfy

f1(X)R ⊆ f2(X)R ⊆ · · · ⊆ ft(X)R ⊆ · · · .

Show that fs(X)R = fm(X)R for some m and all s ≥ m.

Solution. Since each fi is a polynomial, we may take each fi to be comprised of a finite
number of variables.

Namely, f1 ⊂ Z[xk1 , ..., xkn1
] for some kj.

Now, (f1(X)) ⊂ (f2(X)) and so there exists g2(X) such that f1(X) = f2(X)g2(X).
Now, since Z is a UFD, Z[xk1 , ..., xkn1

] is also a UFD, and so f1 can be uniquely factored
into irreducibles (which are primes in a UFD), f1 = p1 · · · pt.

Then, since
f1(X) = p1(X) · · · pt(X) = f2(X)g2(X)

we get that f2g2 ∈ Z[xk1 , ..., xkn1
] and so each pj divides either f2 or g2

Namely, f2(X) ∈ Z[xk1 , ..., xkn1
].

Therefore, inductively, we get that fi(X) ∈ Z[xk1 , ..., xkn1
] for all i and so namely, if

R′ = Z[xk1 , ..., xkn1
], then we can write

f1(X)R′ ⊃ f2(X)R′ ⊃ · · · .

Since Z is Noetherian, by the Hilbert Basis Theorem, R′ = Z[xk1 , ..., xkn1
] is also

Noetherian and so the chain must terminate at some finite m.
Since (fm(X)) = (fn(X)) ⊂ R′ ⊂ R for all n ≥ m, we are done. �
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Problem 7. Let U be the set of all n-th roots of unity in C, for all n ≥ 3, and set F =
Q(U). For primes p1 < · · · < pk and nonzero a1, ..., ak ∈ Q, set M = F (a1/p1

1 , ..., a
1/pk

k ) ⊆
C. Show thatM is Galois over F with a cyclic Galois group. For any subfield F ⊆ L ⊆M,

show that there is a subset T of {a1/pj

j } so that L = F (T ).

Solution. M is Galois over F if M is the splitting field of a separable polynomial over F.
Since a1/pi

i has minimal polynomial fi(x) = xpi − ai, which has roots ξl
ia

1/pi

i for ξi a pth
i

root of unity and 0 ≤ l ≤ pi − 1, fi splits completely in M .
Therefore, M is the splitting field of ∏k

i=1 fi(x) which is a polynomial over F . Thus, M
is Galois over F.

Note that [M : F ] ≤ ∏k
i=1 pi. However,

[M : F ] = [M : F (a1/pi

i )][F (a1/pi

i ) : F ] = [M : F (a1/pi

i )]pi

and so pi|[M : F ] for all i = 1, ..., k. Therefore, [M : F ] = p1 · · · pk.

Now, let G = Gal(M/F ). Using the same logic, we obtain that

K = F (a1/p1
1 , ..., a

1/pi−1
i−1 , a

1/pi+1
i+1 , ..., a

1/pk

k ) is Galois over F

and since [M : K] = pi, G has a normal subgroup of order pi. Namely, G has a normal Sylow
pi-subgroup for all i.

This is only possible if G is abelian and so

G ∼= Zp1 × · · · × Zpk
∼= Zp1···pk

cyclic.

Finally, let F ⊂ L ⊂M.

Then L corresponds to some subgroup of G. However, the subgroups of G correspond
exactly to products of the Zpi

. Thus, if L corresponds to Zpi1
× · · · × Zpil

with l ≤ k, then
L = F (a1/pi1

i1 , ..., a
1/pil
il

). �
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