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Problem 1. Let I and J be ideals of R = Clxy, 3, ..., ] that define the same variety of
C™. Show that for any x € (I + J)/I there is m = m(x) > 0 with 2™ = Og,;. Show that
there is an integer M > 0 so that for any y1,ye,...,ym € (I +J)/I, 1142+ Ym = Oryr.

Solution. To do this, we simply note the following claim.
Claim 1. for I, J ideals of k[z1,...,z,]), VI +J) =V({I)NV(J)

Proof. Let a € V(I)NV(J). Then f(a) =0 for all f € I and g(«) = 0 for
all g € J.

However,
k
I+J= {Zfigi|fi el ,g e J}
i=1
Therefore, since f; vanish and g; vanish at « for all 7, we get that anyh € I + J
will also vanish at a.

Namely, V(I +J) D> V()N V(J).

Since I C I+ Jand J C I+J, V(I +J)C V(I)and V(I +J) C V(J).
Therefore, V(I +J) C V(I)NV(J). 7

Now, by the Claim 1,

VI+J)=vVI)nV(J)=V({I)nV(I)=V{) V(I) = V(J) by assumption.

Therefore, if f(z) € I + J, then for all « € V(I), « € V(I + J) and so f(a) = 0.
Thus, by Nullstellenzatz Part II, there exists an m > 0 such that f™ € I.
Namely, if f € (I + J)/I, there exists m such that f =0 € R/I.

Finally, since R is Noetherian by the Hilbert Basis Theorem, all ideals of R are finitely
generated.

Therefore, if J = (fi(z), ..., fu(x)) we can let m;, i = 1,...,n be the values found earlier
such that f;"*(x) € I for all i. Let m = max{m,}.

We would like to show that [({ + J)/I]"™ = 0. Note that
(L + D)1 22 [J/( O D™ = g™ /(1)
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by the second isomorphism theorem.

Now, we can let

J=Rfi(x)® - - D Rfp(x).

Then
Jm= D Rfi*(x)--- fir(x).

14 Frp=nm

Since ry + - - - + r, = nm, there must exist some r; > m. Otherwise, ry +--- 41, < nm.
However, then f/*(x) € I by the above and so then J"™ C I N J and so namely,

(IO T) 21+ )/ 1™ =0 € R/I.

Therefore, M = nm is such that any product of M things in (I + J)/I will be trivial.
¥
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Problem 2. . If K C L are finite fields with |K| = p" and [L : K] = m then show that
for each 1 <t < mm, any a € L — K has a p'-th root in L. When m = 3, show that every
b € K has a cube root in L.

Solution. Since |L| = p™™ L is the splitting field of 27" — x.
Therefore, for all a € L and for all 1 <t <nm

Now, let m =3, and let b € K.

Then we can let

p: L* — L~

a— a’

Since L* = (a) is a cyclic group of order p*" — 1, we have two cases. First, if 3 is coprime
to p®® — 1, then ¢ is a group isomorphism. Namely, every element of L (and thus K') has a
cube root in L.

If 3 is not coprime to p" — 1, then 3|(p*" — 1) so p" = 3t + 1 some t.

Now, we want to show that K* C ¢(L*) since this will show that every b € K can be
written as some (a®)3 for a® € L.

pSn_l
3

of a is p*>™ — 1. The converse is clearly also true. Thus, z = 0, pgng_l , 2”%3_1 and these are the
only possibilities. Namely,

divides z since the order

Now, if a® € ker ¢, then (a®)® = a>* = 1. However, then

x| _p"—1
LX pu— pu—

Now, since ¢(L*) = (a®) is also cyclic, letting K* = (a¥) for some y, we have that

K* C o(L*) if z|y.

p3n_1
3 .

Claim 2. z divides y if and only if (p" — 1) divides
Proof. If x|y then K* C o(L*) and so |[K*| = p" — 1 must divide
3n71
(LX) = B
Assume (p" — 1) divides 2=, Then the order of a¥ divides the

3
order of a®.

Namely,
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for some t.

And so the order of a** is p" — 1 as well. Thus, (a*') = (a¥) and so z|y. ¥

From the claim, we need only show that (p™ — 1) divides p?mT_l

"1 _ (" =1 +p"+1)
3 3 :

If 3|(p* + p™ + 1) then we are done, so assume not.

Then 3|(p™ — 1). Namely, p" =1 mod 3. Sop* +p"+1=1+1+1=0 mod 3 and
so again, 3|(p*" + p" + 1).

Therefore, p™* — 1 divides (p" — 1)% and so K* C p(L*) is a subgroup.

3
However, £

Finally, this gives that for every b € K, b has a cube root in L. Y
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Problem 3. Let F' be an algebraically closed field and A an F-algebra with dimgp A = n.
If every element of A is either nilpotent or invertible, show that the set of nilpotent
elements of A is an ideal M of A, that M is the unique maximal ideal of A, and that
dimp M =n —1.

Solution. Let M be the set of nilpotent elements of A. Namely, M is the nilradical of
A. M is always an ideal since A is commutative (being an algebra) and so if z,y € M
with 2° = 0 and y* = 0, then (z — y)* = 0 and so  — y € M. Similarly, if a € A then
(ax)® = a’z® = 0 so ax € M.

Thus, M is an ideal.
Now, let M C M' C A with M’ another ideal of A.

Then let z € M’ and x ¢ M. Since x is not nilpotent, it is invertible. Therefore,
7'z =1¢€ M’ and so M' = A.

Thus, M is maximal.

Using this same argument, we get that M must be unique, since any other element not
in M is invertible and so cannot be contained in any proper ideal.

Finally, since A/M is a field, it is a field extension of F'. However, since F' is algebraically
closed, A/M = F.

Therefore,

1 =dimp(A/M) =dimp A —dimp M =n —dimp M — dimp M =n — 1.
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Problem 4. Let M be a finitely generated F[z| module, for F a field.

(a) Show that if f(x)m = 0 for f(z) # 0 forces m = 0, then M is a projective F[z]
module.

(b) If H is an F[z]| submodule of M show that M = H & K for a submodule K of M
if and only if: f(x)m € H for f(x) # 0 implies m € H.

Solution.

(a) Since M is finitely generated over F'z] which is a PID, we may apply the structure
theorem. Note also that because F[z] is a PID, projective is equivalent to free.

Thus, by the structure theorem,
M=PaT(M)

with P the free part of M and T'(M) the torsion part.

Now, let m € T'(m). Then there exists f(x) € F[z] with f(z) # 0 such that f(z)m = 0.
However, by assumption, this implies that m = 0.

Thus, T(M) = 0 and so M = P for some free module P. Therefore, M is free and so it
is projective.
(b) Assume H is an F[z]| submodule of M.
Further, assume that M = H & K for a submodule K of M.
Because M is free, H is free, and so H N K = (0) because H is projective.

Now, let f(x)m € H for f(x) # 0. If m ¢ H, then m € K because M = H ® K and
HnNK = (0).

However, then f(z)m € K because K is a submodule, which is a contradiction.
Thus, m € H.
Assume if f(z)m € H and f(z) # 0, then m € H.

Then, by (a), H is projective, and so letting ¢ : M — H be any surjective homomor-
phism, (which exists since both M and H are free and have bases over F[z]) we get a
short exact sequence of the form

0 K M H 0

where K = ker ¢.

Since H is projective, the sequence is split and M = H & K so we are done.
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Problem 5. Up to isomorphism, describe the possible structures of any group of order
987 =3 -7-4T7.

Solution. There is an abelian group of order 987 isomorphic to

Gg23XZ7XZ47.

Now, for G non-abelian, using the Sylow theorems it is immediate that ny; = 1 since
n47|21 and nyy =1 mod 47 so ngr = 1.

Thus, G has a normal Sylow 47-subgroup. Let P;; be the normal Sylow 47-subgroup,
and Ps, P; be Sylow 3-subgroups and Sylow 7-subgroups.

Claim 3. If N is normal in G and P is a normal Sylow p-subgroup of N, then
P is normal in G.

Proof. Let N be normal in G and P be a normal Sylow p-subgroup of N.

Let ¢ € G. Then gNg~!' = N, therefore, since P is a subgroup of N,
gPg™' C N.

Therefore, if p € P, gpg~" = n € N. However, conjugation is an automor-
phism and preserves order, so n € N has order dividing |P|. Thus, n lies in

some Sylow p-subgroup of N. However, since P is normal in N, P is the only
Sylow p-subgroup of N and son € P.

Thus, G = Ng(P). Y

1

Therefore, since Py7 is normal, P;Py; is a subgroup of G and since it has index 3 which
is the smallest prime dividing the order of G, it is normal by Spring 2010: Problem 2
Claim 1.

Clearly P; is normal in P;Py; since n7|47 and n; =1 mod 7 so n; = 1 so by Claim 3,
P; is normal in G.

P47>4P3XP7. Letgo:P3P7—>Aut(P47). SinCGP47gZ47,

(o Z21 — Z;& = Z46'

Since Zyg has no elements of order 3 or order 7, ¢ can only be the trivial homomorphism
and this gives no new group structures aside from the abelian one.

Now, since P,; is normal, Py;P; and P,; P; are subgroups of G.

P3; x P; x Py7|if P3 < G, then by similar arguments as before, G = P; x P; X Py;.
Let

(o Z7.47 — Aut(Pg) = ZQ.
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Since there are no order 2 elements in Zz.47 this gives nothing interesting.

P; x Pyj; x P3| Since 3 is the smallest prime dividing |G|, and [G : PrPy;| = 3, and
P;P;; = P; x Py; is subgroup of GG, and it is normal by Spring 2010, Problem 2, Claim
1.

Let

(o P3 — Aut(P7 X P47) = Aut(P7) X Aut(P47) = ZG X Z46.
There are exactly two elements of order 3 in Zg X Zyg, namely (2,0) and (4, 0).
Thus, we have two non-trivial homomorphisms, ¢;(1) = (2,0) and ¢5(1) = (4,0).
Let ng <(I> and P7><P47g <b> X <C>
Then (2,0) and (4,0) correspond to the maps v, and 1, respectively, with

It is crucial to note that 1y = 1%.

Thus, if

"}/Zpg—)Pg

a— a?
then 7 is an automorphism of P since a? also a generator of P3 and since o, = ¢, 07, we
get that @9 and ¢; define isomorphic semi-direct products.

Thus, the multiplication for ¢ is aba™ = ;(a)(b) = ¥1(b) = b* and aca™' = ¢1(a)(c) =
1(c) = c.

And so we get one group,

G =2 Zy X Laz Ny, Ly = {a,b,c|a® =b" =" =1,ac = ca,bc = cb, ab = b*a)

P; x Py; x P; | If P3is normal, then P3 x Pj7 is a normal subgroup of G and so we can
examine

gp:P7—>Aut(P3><P47)%JZ2><Z46.

However, again, no non-trivial homomorphism exists.

Pr x Py x Py; | If P is normal, then we can look at

(ol Zg X Z47 —>Aut(P7) %JZ(;

However, this will give two non-trivial homomorphisms, ¢1(1) = (2) and ¢o(1) = 4.

4

Since these automorphisms are given by v (b) = b? and 15(b) = b*, we quickly see that

both of these yield the same multiplicative structure as before.
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Namely, for ¢; we get aba™! = b? and cbe™! = b and for ¢, we get aba™' = b* and
cbc™! = b and ac = ca. These were already described in an earlier case.

Py x P, x Py | If P3 x P is normal, then we can examine

QOZP47—>AUJE(P3XP7)%Z2XZ6.

Clear this forces ¢ to be trivial.

Therefore, there are exactly 2 possible groups up to isomorphism.

Zg X Z7 X Z47

{a,b,cla® =b" =" = 1,ac = ca,bc = cb, ab = b*a)
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Problem 6. Let R = Z[xy,xo, ..., Ty, ...| and let {fi(X)|i > 1} C R satisfy
HXRC H(X)RC - C fi X)RC -+

Show that f(X)R = f,,(X)R for some m and all s > m.

Solution. Since each f; is a polynomial, we may take each f; to be comprised of a finite
number of variables.

Namely, fi C Z[zy,, ..., 7y, ] for some k;.
Now, (f1(X)) C (f2(X)) and so there exists go(X) such that fi(X) = fo(X)ge(X).

Now, since Z is a UFD, Z[xy,, ..., xknl] is also a UFD, and so f; can be uniquely factored
into irreducibles (which are primes in a UFD), f; = p; - p.

Then, since
(X)) =pi(X) - pi(X) = fo(X)ga(X)
we get that fogs € Z[ry,, ..., 74, | and so each p; divides either f, or gy
Namely, fo(X) € Z[zy,, ..., Tp, |-
Therefore, inductively, we get that fi(X) € Z[xy,, ..., v, ] for all i and so namely, if

R = Z[zyy, ..., Tk, |, then we can write
[X)R D f(X)R' D ---
Since Z is Noetherian, by the Hilbert Basis Theorem, R’ = Z[wy,,..., 7, ] is also

Noetherian and so the chain must terminate at some finite m.
Since (fin (X)) = (fn(X)) C R’ C R for all n > m, we are done. ¥
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Problem 7. Let U be the set of all n-th roots of unity in C, for all n > 3, and set F' =
Q(U). For primes p; < --- < p and nonzero ay, ..., ax € Q, set M = F(ai/m, ...,a,i/p’“)
C. Show that M is Galois over F' with a cyclic Galois group. For any subfield ' C L C M,

show that there is a subset T' of {a;/pj} so that L = F(T).

N

Solution. M is Galois over F'if M is the splitting field of a separable polynomial over F.

Since a, /P has minimal polynomial fi(z) = P — a;, which has roots €la; P for & a pih
root of unity and 0 <[ < p; — 1, f; splits completely in M.

Therefore, M is the splitting field of []¥_, fi(z) which is a polynomial over F. Thus, M
is Galois over F.

Note that [M : F] < [1*_, p;. However,

(M : F] = [M: F(a;™)][F(a;/") : F] = [M : F(a;™)]p;

)

and so p;|[M : F] for all i = 1, ..., k. Therefore, [M : F] = py - - py.
Now, let G = Gal(M/F'). Using the same logic, we obtain that

K = F(a)™ Ypic1 g l/pi /P is Galois over F

yeen Qi 5 Qi e @

and since [M : K] = p;, G has a normal subgroup of order p;. Namely, G has a normal Sylow
pi-subgroup for all .

This is only possible if GG is abelian and so

G=Zy X X Ly, = Loy, cyclic.

Finally, let FF C L C M.

Then L corresponds to some subgroup of G. However, the subgroups of G correspond
exactly to products of the Z,,. Thus, if L corresponds to Z;, X --- X Ly, with | <k, then

L:F(a;{pil,...,a-l/p”). Y

)
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