Kayla Orlinsky
 Algebra Exam Spring 2010

Problem 1. Let $f(x)=x^{6}+3 \in \mathbb{Q}[x]$. Show that the Galois group of f is S_{3}.

Solution. First, we note that $f(x)$ is separable since its roots are all distinct.
We now proceed with some computation to determine the number and order of the roots that we need to adjoint to \mathbb{Q} to obtain the splitting field for f.

Now, if $f(x)=0$ then $x^{6}=-3$. Letting $z=R e^{i \theta} \in \mathbb{C}$ we get that

$$
\left(R e^{i \theta}\right)^{6}=R^{6} e^{i 6 \theta}=-3=3(-1+0 i)
$$

so $R=\sqrt[6]{3}$ and $6 \theta=(2 k+1) \pi$.
This computation shows that we get

$$
\pm \sqrt[6]{3} i \quad \sqrt[6]{3}\left(\pm \frac{\sqrt{3}}{2} \pm \frac{1}{2} i\right)
$$

as roots.
Since

$$
(\sqrt[6]{3} i)^{4}=3^{\frac{4}{6}}=3^{\frac{1}{2}} 3^{\frac{1}{6}}=\sqrt[6]{3} \sqrt{3}
$$

so we finally get that all the roots of $f(x)$ can be obtained by adjoining $\sqrt[6]{3} i$ to \mathbb{Q}.
Namely, if $\alpha=\sqrt[6]{3} i$, then the roots of f are

$$
\pm \alpha, \quad \pm \alpha^{4} \pm \alpha
$$

Namely, $\mathbb{Q}(\alpha)$ is the splitting field for f.
Since we already noted that f is separable, we get that $|\operatorname{Gal}(\mathbb{Q}(\alpha) / \mathbb{Q})|=[\mathbb{Q}(\alpha): \mathbb{Q}]=6$ since the minimal polynomial of α is $x^{6}+3$.

Now, we need only prove that $\operatorname{Gal}(\mathbb{Q}(\alpha) / \mathbb{Q})$ is non-abelian.
However, this is straightforward since we already wrote down the roots of f.
If

$$
\begin{aligned}
\tau: \mathbb{Q}(\alpha) & \rightarrow \mathbb{Q}(\alpha) \\
\alpha & \mapsto-\alpha
\end{aligned}
$$

and

$$
\begin{aligned}
\sigma: \mathbb{Q}(\alpha) & \rightarrow \mathbb{Q}(\alpha) \\
\alpha & \mapsto \alpha^{4}+\alpha
\end{aligned}
$$

Note that both of these maps exist since f is irreducible and separable so $\operatorname{Gal}(f)$ is transitive (for any two roots of f, there exists an automorphism sending one to the other).

Finally,

$$
\tau(\sigma(\alpha))=\tau\left(\alpha^{4}+\alpha\right)=\alpha^{4}-\alpha
$$

and

$$
\sigma(\tau(\alpha))=\sigma(-\alpha)=-\alpha^{4}-\alpha
$$

so the two maps do not commute.
Therefore, $\operatorname{Gal}(f)$ is non-abelian and since the only non-abelian group of order 6 is S_{3} we are done.

Problem 2.

(a) Let G be a group of order $p q r$, where $p<q<r$ are primes. Show that G contains a normal subgroup of index p.
(b) Determine up to isomorphism all groups of order $3 \cdot 7 \cdot 13$.

Solution.

(a) By Lagrange's theorem, for all $p \| G \mid$, there exists a subgroup N of order p. Now, we will show that if p is the smallest prime dividing $|G|$ and $[G: N]=p$ then N is normal.

Claim 1. If p is the smallest prime dividing $|G|$ and $[G: N]=p$, then N is normal.

Proof. Assume not. Then there exists $g \in G$ with $g \notin N$ such that $N \neq g N g^{-1}$. Let $N^{g}=g N g^{-1}$.
Now, as sets, we have that

$$
\left|N N^{g}\right|=\frac{|N|\left|N^{g}\right|}{\left|N \cap N^{g}\right|} .
$$

If $G=N N^{g}$ then $g^{-1}=n_{1} g n_{2} g^{-1}$ and so $n_{1}^{-1} n_{2}^{-1}=g \in N$, an contradiction. Namely, $|G|>\left|N N^{g}\right|$.
However, we finally have that

$$
\left|N N^{g}\right|=\frac{|N|\left|N^{g}\right|}{\left|N \cap N^{g}\right|}<|G|=p|N|
$$

and so namely,

$$
\frac{\left|N^{g}\right|}{\left|N \cap N^{g}\right|}<p
$$

Since p is the smallest prime dividing $|G|$, there cannot be any elements of order smaller than p and so namely, $\left|N^{g}\right|=\left|N \cap N^{g}\right|$ and since $N \cap N^{g} \subset N^{g}$, we get that $N \cap N^{g}=N^{g}$.
Namely, $N=N^{g}$. This is a contradiction again and so no such g exists. \nexists
Therefore, from the claim, N is normal and it exists by Lagrange.
(b) Abelian: $\mathbb{Z}_{3} \times \mathbb{Z}_{7} \times \mathbb{Z}_{13}$ by the fundamental classification theorem of Abelian Groups. Now, using the Sylow Theorems, which state that $n_{p} \equiv 1 \bmod p$ and that $n_{p} \mid m$ with $|G|=p^{k} m$.

Thus, $n_{7} \equiv 1 \bmod 7$ and $n_{7} \mid 3 \cdot 13$. Since $7 \nmid 12$, and $7 \nmid 38, n_{7}=1$.
Finally, $n_{13}=1$ trivially by the same reasoning.
Thus, G contains exactly one normal Sylow subgroup of orders 7,13 . Note that any Sylow 3-subgroups are isomorphic to $\mathbb{Z}_{3}, \mathbb{Z}_{7}, \mathbb{Z}_{13}$ respectively.
Now, we begin the classificiation. Starting with a normal Sylow-subgroup, we will take automorphisms of that Sylow subgroup and see how those act on the product of the remain two Sylow subgroups.
Then we note that from (a), $P_{7} P_{13}$ is a normal subgroup of G.
First, if G has a normal Sylow 3-subgroup, then $\operatorname{Aut}\left(\mathbb{Z}_{3}\right) \cong \mathbb{Z}_{3}^{*} \cong \mathbb{Z}_{2}$. Since there are no order two elements of $\mathbb{Z}_{7} \times \mathbb{Z}_{13}$ and so this yields nothing. Namely, there are no non-trivial homomorphisms $\varphi: \mathbb{Z}_{7} \times \mathbb{Z}_{13} \rightarrow \mathbb{Z}_{2}$
Second, $\operatorname{Aut}\left(\mathbb{Z}_{7}\right) \cong \mathbb{Z}_{6}$ has two elements of order 3,

$$
\begin{array}{rlrl}
\alpha_{1}: \mathbb{Z}_{7} & \rightarrow \mathbb{Z}_{7} & \alpha_{2}: \mathbb{Z}_{7} & \rightarrow \mathbb{Z}_{7} \\
b & \mapsto b^{2} & b & \mapsto b^{4}
\end{array}
$$

Note that $\alpha_{2}=\alpha_{1}^{2}$
Thus, we can let

$$
\begin{aligned}
\psi_{1}: \mathbb{Z}_{3} \times \mathbb{Z}_{13} & \rightarrow \mathbb{Z}_{6} \\
(1,0) & \mapsto 2=\alpha_{1} \\
(0,1) & \mapsto 0=\mathrm{Id}
\end{aligned}
$$

be a non-trivial homomorphism.
Let

$$
\mathbb{Z}_{3} \times \mathbb{Z}_{13}=\langle a\rangle \times\langle c\rangle \quad \mathbb{Z}_{7}=\langle b\rangle
$$

Then $\psi_{1}(a, 0)(b)=\alpha_{1}(b)=b^{2}$ and $\psi_{1}(0, c)(b)=\operatorname{Id}(b)=b$. Finally, for ψ_{1}, this gives the relation

$$
a b a^{-1}=\psi_{1}(a)(b)=b^{2} \Longrightarrow a b=b^{2} a
$$

and

$$
c b c^{-1}=b \Longrightarrow c b=b c .
$$

Thus, we obtain the presentation
$\mathbb{Z}_{7} \rtimes_{\psi_{1}}\left(\mathbb{Z}_{3} \times \mathbb{Z}_{13}\right) \cong\left\langle a, b, c \mid a^{3}=b^{7}=c^{13}=1, a c=c a, a b=b^{2} a, c b=b c\right\rangle \cong\left(\mathbb{Z}_{7} \rtimes_{\psi_{1}} \mathbb{Z}_{3}\right) \times \mathbb{Z}_{13}$
and similarly for ψ_{2},

$$
\begin{aligned}
\psi_{2}: \mathbb{Z}_{3} \times \mathbb{Z}_{13} & \rightarrow \mathbb{Z}_{6} \\
(1,0) & \mapsto 4=\alpha_{2} \\
(0,1) & \mapsto 0=\mathrm{Id}
\end{aligned}
$$

Now, we note that

$$
\begin{aligned}
\varphi: \mathbb{Z}_{3} \times \mathbb{Z}_{13} & \rightarrow \mathbb{Z}_{3} \times \mathbb{Z}_{13} \\
(1,0) & \mapsto(2,0) \\
(0,1) & \mapsto(0,1)
\end{aligned}
$$

is an automorphism of $\mathbb{Z}_{3} \times \mathbb{Z}_{13}$ and since $\psi_{2}=\psi_{1} \circ \varphi$, we have that ψ_{1} and ψ_{2} generate isomorphic semi-direct products.
Third, $\operatorname{Aut}\left(\mathbb{Z}_{13}\right) \cong \mathbb{Z}_{12}$ which has 2 elements of order 3 and no elements of order 7 call them β_{1}, β_{2} with $\beta_{1}(c)=c^{3}$ and $\beta_{2}(c)=c^{9}$.
Let $\psi_{3}: \mathbb{Z}_{3} \times \mathbb{Z}_{7} \rightarrow \mathbb{Z}_{12}$ be the map where $\psi_{3}(a)(c)=\beta_{1}(c)=c^{3}$ and $\psi_{3}(b)(c)=c$
Similarly, $\psi_{4}(a)(c)=c^{9}$ and $\psi_{4}(b)(c)=c$. As from the previous case, letting $\varphi(1,0)=$ $(2,0)$ and $\varphi(0,1)=(0,1)$, we get hat $\psi_{4}=\psi_{3} \circ \varphi$ and so again, the semi-direct products will be isomorphic.
This gives one presentation:

$$
\mathbb{Z}_{13} \rtimes_{\psi_{3}}\left(\mathbb{Z}_{3} \times \mathbb{Z}_{7}\right) \cong\left\langle a, b, c \mid a^{3}=b^{7}=c^{13}=1, a b=b a, a c=c^{3} a, b c=c b\right\rangle \cong\left(\mathbb{Z}_{13} \rtimes_{\psi_{3}} \mathbb{Z}_{3}\right) \times \mathbb{Z}_{7}
$$

Fourth $P_{7} P_{13} \cong \mathbb{Z}_{7} \times \mathbb{Z}_{13}$ is also a normal subgroup. $\operatorname{Aut}\left(\mathbb{Z}_{7} \times \mathbb{Z}_{13}\right) \cong \mathbb{Z}_{6} \times \mathbb{Z}_{12}$.
Thus, we have

$$
\begin{aligned}
\psi_{5}: \mathbb{Z}_{3} & \rightarrow \mathbb{Z}_{6} \times \mathbb{Z}_{12} \\
1 & \mapsto(2,0)=\left(\alpha_{1}, \text { Id }\right) \\
\psi_{6}: \mathbb{Z}_{3} & \rightarrow \mathbb{Z}_{6} \times \mathbb{Z}_{12} \\
1 & \mapsto(4,0)=\left(\alpha_{2}, \text { Id }\right) \\
\psi_{7}: \mathbb{Z}_{3} & \rightarrow \mathbb{Z}_{6} \times \mathbb{Z}_{12} \\
1 & \mapsto(0,4)=\left(\text { Id }, \beta_{1}\right) \\
\psi_{8}: \mathbb{Z}_{3} & \rightarrow \mathbb{Z}_{6} \times \mathbb{Z}_{12} \\
1 & \mapsto(0,8)=\left(\text { Id }, \beta_{2}\right) \\
\psi_{9}: \mathbb{Z}_{3} & \rightarrow \mathbb{Z}_{6} \times \mathbb{Z}_{12} \\
1 & \mapsto(2,4)=\left(\alpha_{1}, \beta_{1}\right) \\
\psi_{10}: \mathbb{Z}_{3} & \rightarrow \mathbb{Z}_{6} \times \mathbb{Z}_{12} \\
1 & \mapsto(2,8)=\left(\alpha_{1}, \beta_{2}\right) \\
\psi_{11}: \mathbb{Z}_{3} & \rightarrow \mathbb{Z}_{6} \times \mathbb{Z}_{12} \\
1 & \mapsto(4,4)=\left(\alpha_{2}, \beta_{1}\right) \\
\psi_{12}: \mathbb{Z}_{3} & \rightarrow \mathbb{Z}_{6} \times \mathbb{Z}_{12} \\
1 & \mapsto(4,8)=\left(\alpha_{2}, \beta_{2}\right)
\end{aligned}
$$

Where $\alpha_{1}: \mathbb{Z}_{6} \rightarrow \mathbb{Z}_{6}$ is defined by $\alpha_{1}(1)=2$, $\alpha_{2}(1)=4$, $\beta_{1}: \mathbb{Z}_{13} \rightarrow \mathbb{Z}_{13}$ is defined by $\beta_{1}(1)=3$, and $\beta_{2}(1)=9$.
Since $\alpha_{1}^{2}=\alpha_{2}$, and $\beta_{1}^{2}=\beta_{2}$, it is clear to see that each of these homomorphisms pairs up with another one via $\varphi: \mathbb{Z}_{3} \rightarrow \mathbb{Z}_{3}$ defined by $\varphi(1)=2$. For example, $\psi_{6}=\psi_{5} \circ \varphi$.
Now, let $\mathbb{Z}_{3}=\langle a\rangle, \mathbb{Z}_{7}=\langle b\rangle$ and $\mathbb{Z}_{13}=\langle c\rangle$ as before. We note that the ψ_{5} and ψ_{6} which generate isomorphic semi-direct products will generate the same group as ψ_{2} from the second part. This is because, a will commute with c and $a b a^{-1}=\psi_{5}(a)(b)=\alpha_{1}(b)=b^{2}$. Similarly, ψ_{7} and ψ_{8} generate the same group as ψ_{3} from the third part.
Finally, this will yield two sets of non-ismorphic groups. First, one defined by ψ_{9}, with relations $a b a^{-1}=\psi_{9}(a)(b)=\alpha_{1}(b)=b^{2}$ and $a c a^{-1}=\psi_{9}(a)(c)=c^{3}$, which gives

$$
\left(\mathbb{Z}_{7} \times \mathbb{Z}_{13}\right) \rtimes_{\psi_{9}} \mathbb{Z}_{3} \cong\left\langle a, b, c \mid a^{3}=b^{7}=c^{13}=1, b c=c b, a b=b^{2} a, a c=c^{3} a\right\rangle
$$

And the other non-isomophic group has relations defined by $a b a^{-1}=\psi_{10}(a)(b)=b^{2}$ and $a c a^{-1}=\psi_{10}(a)(c)=c^{9}$, which gives

$$
\left(\mathbb{Z}_{7} \times \mathbb{Z}_{13}\right) \rtimes_{\psi_{10}} \mathbb{Z}_{3} \cong\left\langle a, b, c \mid a^{3}=b^{7}=c^{13}=1, b c=c b, a b=b^{2} a, a c=c^{9} a\right\rangle
$$

Note: that to verify that ψ_{9} and ψ_{10} do indeed generate non-isomorphic groups we turn to a stronger theorem of Taunt in Remarks on the Isomorphism Problem in Theories of Construction of Finite Groups.
The theorem states that:

If $|N|$ and $|H|$ are comprime, then

$$
N \rtimes_{\psi_{1}} H \cong N \rtimes_{\psi_{2}} H
$$

if and only if there exists $\alpha \in \operatorname{Aut}(N)$ and $\beta \in \operatorname{Aut}(H)$ such that

$$
\left(\psi_{1} \circ \beta\right)(h)=\alpha \circ \psi_{2}(h) \circ \alpha^{-1} \in \operatorname{Aut}(N)
$$

for all $h \in H$.

In this case, because $\operatorname{Aut}(N) \cong \mathbb{Z}_{6} \times \mathbb{Z}_{12}$ which is abelian. Namely, $\alpha \circ \psi_{2}(h) \circ \alpha^{-1}=$ $\psi_{2}(h)$.
Therefore, we have that two homomorphisms generate isomorphic semi-direct products, if and only if they differ by an isomorphism of \mathbb{Z}_{3}. Since there are only two isomoprhisms of \mathbb{Z}_{3}, it is easy to verify that ψ_{9} and ψ_{10} do not generate isomorphic semi-direct products.
Fifth We can also define a normal subgroup $P_{3} P_{13}$ since both P_{3} and P_{13} normal in G and intersect trivially, $P_{3} P_{13} \cong \mathbb{Z}_{3} \times \mathbb{Z}_{13}$ is normal in G.
However, $\operatorname{Aut}\left(\mathbb{Z}_{3} \times \mathbb{Z}_{13}\right) \cong \mathbb{Z}_{2} \times \mathbb{Z}_{12}$ has no elements of order 7 .
Similarly, $\operatorname{Aut}\left(\mathbb{Z}_{3} \times \mathbb{Z}_{7}\right) \cong \mathbb{Z}_{2} \times \mathbb{Z}_{6}$ has no elements of order 13 .

As we have now ruled out all possible normal subgroups of G, we can conclude that we have found all of the isomorphism classes. Listed out, the four non-abelian groups and one abelian group are

Groups of order $3 \cdot 7 \cdot 13$:

$$
\begin{gathered}
\mathbb{Z}_{3} \times \mathbb{Z}_{7} \times \mathbb{Z}_{13} \\
\mathbb{Z}_{7} \rtimes_{\psi_{1}} \mathbb{Z}_{3} \times \mathbb{Z}_{13} \cong\left\langle a, b, c \mid a^{3}=b^{7}=c^{13}=1, a c=c a, a b=b^{2} a, c b=b c\right\rangle \\
\mathbb{Z}_{13} \rtimes_{\psi_{3}} \mathbb{Z}_{3} \times \mathbb{Z}_{7} \cong\left\langle a, b, c \mid a^{3}=b^{7}=c^{13}=1, a b=b a, a c=c^{3} a, b c=c b\right\rangle \\
\left(\mathbb{Z}_{7} \times \mathbb{Z}_{13}\right) \rtimes_{\psi_{9}} \mathbb{Z}_{3} \cong\left\langle a, b, c \mid a^{3}=b^{7}=c^{13}=1, b c=c b, a b=b^{2} a, a c=c^{3} a\right\rangle \\
\left(\mathbb{Z}_{7} \times \mathbb{Z}_{13}\right) \rtimes_{\psi_{10}} \mathbb{Z}_{3} \cong\left\langle a, b, c \mid a^{3}=b^{7}=c^{13}=1, b c=c b, a b=b^{2} a, a c=c^{9} a\right\rangle
\end{gathered}
$$

Problem 3. Let R be a commutative Noetherian ring, and let I, J and K be ideals of R. We say I is irreducible if $I=J \cap K \Longrightarrow I=J$ or $I=K$.
(a) Show that every ideal of R is a finite intersection of irreducible ideals.
(b) Show that every irreducible ideal is primary. (An ideal I of R is primary if $R / I \neq 0$, and every zero-divisor in R / I is nilpotent.)

Solution.

(a) Assume not. Let I be an ideal of R which is not a finite intersection of irreducibles.

Then, there exists ideals J_{1} and J_{2} such that $I=J_{1} \cap K_{1}$ with $I \subsetneq J_{1}$ and $I \subsetneq K_{1}$. Note that if J_{1} and K_{1} do not exist, then $I=J_{1} \cap K$ implies $I=J_{1}$ or $I=K_{1}$ and so I is itself irreducible, a contradiction.
Now, because I is not a finite intersection of irreducibles, it must be that either J_{1} or K_{1} is also not a finite intersection of irreducibles. (If both were such an intersection, then I would be as well).
WLOG, take J_{1} to be not a finite intersection of irreducibles. However, by the same argument as before, we can write $J_{1}=J_{2} \cap K_{2}$ with $J_{1} \subsetneq J_{2}$ and $J_{1} \subsetneq K_{2}$.
Namely, we obtain an ascending chain

$$
I \subsetneq J_{1} \subsetneq J_{2} \subsetneq \cdots
$$

which must terminate because R is Noetherian.
However, if the chain terminates at J_{n}, so $J_{m}=J_{n}$, then this implies that there do not exist any ideals J and K such that $J_{n} \subsetneq J \cap K$ and $J_{n} \subsetneq J$ and $J_{n} \subsetneq K$. Else, we could call $J_{n+1}=J$.
Thus, J_{n} is irreducible, which is a contradiction.
(b) Let I be an irrediucible proper ideal of R. Then $R / I \neq 0$.

Let $0 \neq a \in R / I$ be a zero divisor. Then there exists $0 \neq b \in R / I$ such that $a b=0 \in R / I$ so namely, $a b \in I$ with $a \notin I$ and $b \notin I$.
Now, we note that this implies that $b \in \operatorname{Ann}(a) \subset \operatorname{Ann}\left(a^{2}\right) \subset \operatorname{Ann}\left(a^{3}\right) \subset \cdots$ since if $a b=0$ then $a^{k} b=a^{k-1} 0=0$.
Now, because R is Noetherian and quotients of Noetherian rings are also Noetherian, we have that R / I is Noetherian. Namely, the chain

$$
\operatorname{Ann}(a) \subset \operatorname{Ann}\left(a^{2}\right) \subset \operatorname{Ann}\left(a^{3}\right) \subset \cdots
$$

must terminate.
Say the chain terminates at $\operatorname{Ann}\left(a^{n}\right)$ so $\operatorname{Ann}\left(a^{m}\right)=\operatorname{Ann}\left(a^{n}\right)$ for all $m \geq n$.

Now, let $b \in \operatorname{Ann}(a)$ and $x \in(b) \cap\left(a^{n}\right)$. Then $x=r b=s a^{n}$. However, then $0=r b a=s a^{n+1}$ and so $s \in \operatorname{Ann}\left(a^{n+1}\right)=\operatorname{Ann}\left(a^{n}\right)$ and so $x=s a^{n}=0$.
Thus, $(b) \cap\left(a^{n}\right)=(0)=I$. However, I is irreducible so either $I=(b)$ or $I=\left(a^{n}\right)$. Since $b \notin I$ by assumption, it must be that $I=\left(a^{n}\right)$ and so namely, $a^{n}=0 \in R / I$.
Thus, every zero-divisior is nilpotent.

Problem 4. Let A be a finite-dimensional algebra over a field K, such that for every $a \in A, a^{7}=a$. Show that A is a direct product (sum?) of fields. Which fields can arise?

Solution. First, we note that $K \subset A$ and so the fact that $a^{7}=a$ for all $a \in A$ forces $k^{7}=k$ for all $k \in K$.

Namely, $K \cong \mathbb{F}_{7}$.
Now, because A is a finite dimensional vector space, it is Artinian (because all ideals are finite-dimensional subspaces of A so infinite chains cannot exist).

Now, let $a \in J(A)$ the Jacobson radical of A. Then $a^{6} \in J(A)$ because $J(A)$ is an ideal of A.

However, $J(A)$ is quasi-invertible so there exists $b \in A$ such that

$$
b\left(1-a^{6}\right)=1
$$

However, this implies that

$$
b\left(1-a^{6}\right) a=a \Longrightarrow b\left(a-a^{7}\right)=a \Longrightarrow a=0
$$

so $J(A)=(0)$.
Therefore, by Artin-Wedderburn, A can be written as a finite direct sum of matrix algebras over division rings. Namely,

$$
A \cong M_{n_{1}}\left(D_{1}\right) \oplus \cdots \oplus M_{n_{l}}\left(D_{l}\right) \quad D_{l} \text { division rings over } K
$$

Now, because D_{i} is a division ring over K, it must be a field extension of K. However, since A has the property that $a^{7}=a$ for all $a \in A$, each $d \in D_{i}$ satisfies this property as well so $D_{i}=K$ for all i.

Now, because there exist non-zero nilpotent elements in any matrix ring, it must be that $n_{i}=1$ for all i.

Namely,

$$
A \cong \bigoplus_{i=1}^{l} K
$$

Problem 5. Let G and H be finitely generated abelian groups such that $G \otimes_{\mathbb{Z}} H=0$. Show that G and H are finite and have relatively prime orders.

Solution. By the fundamental theorem of finitely generated abelian groups, we can write

$$
\begin{aligned}
& G \cong \mathbb{Z}^{s} \oplus \mathbb{Z}_{n_{1}} \oplus \cdots \oplus \mathbb{Z}_{n_{k}} \\
& H \cong \mathbb{Z}^{t} \oplus \mathbb{Z}_{m_{1}} \oplus \cdots \oplus \mathbb{Z}_{m_{l}}
\end{aligned}
$$

Now, because tensor product distributes across direct sums, we have that

$$
\begin{aligned}
G \otimes_{\mathbb{Z}} H & =\left(\mathbb{Z}^{s} \oplus \mathbb{Z}_{n_{1}} \oplus \cdots \oplus \mathbb{Z}_{n_{k}}\right) \otimes_{\mathbb{Z}}\left(\mathbb{Z}^{t} \oplus \mathbb{Z}_{m_{1}} \oplus \cdots \oplus \mathbb{Z}_{m_{l}}\right) \\
& =\left(\mathbb{Z}^{s} \otimes_{\mathbb{Z}} \mathbb{Z}^{t}\right) \bigoplus_{i=1}^{k}\left(\mathbb{Z}_{n_{i}} \times_{\mathbb{Z}} \mathbb{Z}^{t}\right) \bigoplus_{j=1}^{l}\left(\mathbb{Z}^{s} \otimes_{\mathbb{Z}} \mathbb{Z}_{n_{j}}\right) \bigoplus_{i, j}\left(\mathbb{Z}_{n_{i}} \otimes_{\mathbb{Z}} \mathbb{Z}_{m_{j}}\right) \\
& =0
\end{aligned}
$$

Since this is only possible if each individual tensor product is zero, we immediately see that $s=t=0$. Therefore, we need only show that $\mathbb{Z}_{n} \otimes_{\mathbb{Z}} \mathbb{Z}_{m}=0$ implies that n and m are coprime. In fact, we will show something far stronger:

Claim 2. $\mathbb{Z}_{n} \otimes_{\mathbb{Z}} \mathbb{Z}_{m} \cong \mathbb{Z}_{d}$ with $d=\operatorname{gcd}(m, n)$.

Proof. To do this, we let $f: \mathbb{Z}_{n} \times \mathbb{Z}_{m} \rightarrow \mathbb{Z}_{d}$ defined by $f(a, b)=(a \bmod d, b$ $\bmod d)$ which is well defined because $d=\operatorname{gcd}(m, n)$.

Now, by the universal property of tensor products, because \mathbb{Z}_{d} is abelian, there exists a map $\varphi: \mathbb{Z}_{n} \otimes_{\mathbb{Z}} \mathbb{Z}_{m} \rightarrow \mathbb{Z}_{d}$ such that $f=\varphi \circ i$ where $i: \mathbb{Z}_{n} \times \mathbb{Z}_{m} \rightarrow$ $\mathbb{Z}_{n} \otimes_{\mathbb{Z}} \mathbb{Z}_{m}$ defined by $i(a, b)=a \otimes b$.

Now, if $f(a, b)=(0,0)$ then $d \mid a$ and $d \mid b$. Therefore,

$$
\frac{n}{d}(a \otimes b)=n \frac{a}{d} \otimes b=0 \quad a / d \text { has order dividing } n
$$

and similarly,

$$
(a \otimes b) \frac{m}{d}=a \otimes \frac{b}{d} m=0
$$

Therefore, the order of $a \otimes b$ divides n / d and m / d. However, $d=\operatorname{gcd}(m, n)$ so n / d and m / d are coprime so $a \otimes b$ has order 1 and is trivial.

Thus, $\operatorname{ker}(f) \subset=\operatorname{ker}(\varphi \circ i) \subset \operatorname{ker}(i)$. However, clearly $\operatorname{ker}(i) \subset \operatorname{ker}(\varphi \circ i)$ so $\operatorname{ker}(f)=\operatorname{ker}(i)$ and therefore, $\operatorname{ker}(\varphi)=(0)$.

Finally, f is certainly surjective since $d \mid n$ and $d \mid m$ so φ must be surjective as well.

Therefore, φ is an isomorphism.
Finally, from the claim, $\mathbb{Z}_{n} \otimes_{\mathbb{Z}} \mathbb{Z}_{m}=0$ forces $\operatorname{gcd}(n, m)=1$ and so n_{i} and m_{j} are coprime for all i, j. Namely, $|G|$ and $|H|$ are coprime.

Problem 6. Let S and T be diagonalizable endomorphisms of a finite dimensional complex vector space. If S and T commute show that they are polynomials in each other.

Solution. First, we note that it is necessary that either S or T has distinct eigenvalues.
For example, $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ are both diagonalizable matrices, and so represent diagonalizable endomorphisms from $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. Furthermore, $I A=A=A I$ so both matrices commute.

However, $A^{n}=A$ for all n and so if I is a polynomial in A it is of the form $I=a A+b I$ which implies that $I=\frac{a}{1-b} A$ which is a contradiction.

Now, assume WLOG, that S has distinct eigenvalues.
Then the minimal polynomial of S is the characteristic polynomial of degree n by Cayley.
Now, let M be the space of all matrices which commute with S.
It is immediate that M is a subspace of $M_{n}(\mathbb{C})$ since it is closed under addition and scalar multiplication. Namely, if S commutes with A and B, then

$$
S(a A+b B)=S a A+S b B=a A S+b B S=(a A+b B) S
$$

Now, we note that S commutes with itself so $S^{n} \in M$ for all $n \in \mathbb{N}$.

Claim 3. M has dimension n and $\left\{I, S, S^{2}, \ldots, S^{n-1}\right\}$ is a basis for M.

Proof. First, because S has minimal polynomial of degree n, this set is certainly linearly independent in $M_{n}(\mathbb{C})$ and so it is in M as well.

Therefore, $\operatorname{deg}(M) \geq n$.
Now, let T commute with S. Let x be an eigenvector of S with eigenvalue λ.

Then

$$
S(T x)=T S x=T \lambda x=\lambda T x
$$

so $T x$ is also an eigenvector of S with eigenvalue λ.
However, the eigenvalues of S are all distinct, so the eigenvectors of S associated to λ generate a 1-dimensional subspace. Namely, there exists γ so $T x=\gamma x$.

Therefore, the eigenvectors of S are the same as those of T.
Namely, S and T are simultaneously diagonalizable so there exists a P invertible such that $P S P^{-1}=D_{1}$ and $P T P^{-1}=D_{2}$.

Thus,

$$
\begin{aligned}
M & =\left\{A \in M_{n}(\mathbb{C}) \mid A S=S A\right\} \\
& =\left\{P^{-1} D P \in M_{n}(\mathbb{C}) \mid D D_{1}=D_{1} D\right\} \\
& \cong M^{\prime} \subset\left\{D \in M_{n}(\mathbb{C}) \mid D \text { diagonal }\right\}
\end{aligned}
$$

so namely, $\operatorname{dim}(M) \leq n$.
Since M has dimension n and $\left\{I, S, S^{2}, \ldots, S^{n-1}\right\}$ is linearly independent in M, then it forms a basis for M.
Finally, from the claim, $T \in M$ and so T is a linear combination of basis elements and so T is a polynomial in S.

Similarly for S being a polynomial in T.

Problem 7. What are the prime ideals of $\mathbb{Z}[x]$? What are the maximal ideals? Carefully explain your answers.

Solution. Prime Clearly, $(0),(p),(f(x)),(p, f(x))$ are all prime whenever $f(x)$ is irreducible in $\mathbb{Z}[x]$ which is a UFD.

This is because

$$
\mathbb{Z}[x] /(p) \cong \mathbb{Z}_{p}[x] \quad \text { PID because } \mathbb{Z}_{p} \text { is a field }
$$

so namely, $\mathbb{Z}[x]$ is a domain.
Similarly, if $f(x)$ is irreducible, then $\mathbb{Z}[x] /(f(x))$ is a domain. This is because if $g(x)$ is a zero divisor in $\mathbb{Z}[x] /(f(x))$, then there exists $h_{1}(x) \notin(f(x))$ and $h_{2}(x) \notin(f(x))$ such that $g(x) h_{1}(x)=f(x) h_{2}(x)$. However, $f(x)$ irreducible in $\mathbb{Z}[x]$ which is a UFD implies that $f(x)$ is prime. So this implies that $f(x) \mid g(x)$ or $f(x) \mid h_{1}(x)$. Since $f(x) \nmid h_{1}(x)$ by the assumption that $h_{1}(x) \notin(f(x))$, it must be that $g(x) \in(f(x))$ and so $g(x)=0 \in \mathbb{Z}[x] /(f(x))$.

Finally, $(p, f(x))$ is prime for similar reasons as the first two.
Now, assume that P is a non-zero prime ideal of $\mathbb{Z}[x]$. If $f(x) \in P$ is irreducible and constant, then $f=p$ for a prime p, else $\mathbb{Z}[x] / P$ will not be a domain. Therefore, if every $f \in P$ is constant, then $P=(p)$ for some prime p.

Next, let $f(x) \in P$ be non-constant and irreducible. Note that such an f must exist, else $f(x)=g(x) h(x)$ and so because P is prime, either $g(x) \in P$ or $h(x) \in P$. In either case, because f can have only a finite number of irreducible factors, we can proceed until P contains an irreducible element.

Now, we note that if $P \cap \mathbb{Z}$ is a prime ideal of \mathbb{Z} since if $a b \in P \cap \mathbb{Z}$ then either $a \in P$ or $b \in P$ and certainly a or b is in \mathbb{Z}.

Therefore, $P \cap \mathbb{Z}=(0)$ or $P \cap \mathbb{Z}=(p)$ for p prime.
If P does not contain p, then $P /(p) \cong P$ and $\mathbb{Z}[x] /(p) \cong \mathbb{Z}_{p}[x]$ which is a PID. Therefore, $P /(p)=(h(x)) \cong P$ and so because f is irreducible and $f \in P P=(f(x))$.

If P does contain p, then by the exact same reasoning, $P /(p)=(f(x))$ and so $P=$ $(f(x), p)$ since every $h \in P$ is of the form $f k_{1}+p k_{2}$.

Therefore, the above list are the only possible prime ideals of $\mathbb{Z}[x]$.
Maximal Now, if M is a maximal ideal of $\mathbb{Z}[x]$, then M is prime and $\mathbb{Z}[x] / M$ is a field. Since the only prime ideal in our above list which satisfies this criteria is $(f(x), p)$, we have that the maximal ideals are of the form $(f(x), p)$ for f irreducible and p prime.

