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Problem 1. Let f(x) = x6 + 3 ∈ Q[x]. Show that the Galois group of f is S3.

Solution. First, we note that f(x) is separable since its roots are all distinct.
We now proceed with some computation to determine the number and order of the roots

that we need to adjoint to Q to obtain the splitting field for f .
Now, if f(x) = 0 then x6 = −3. Letting z = Reiθ ∈ C we get that

(Reiθ)6 = R6ei6θ = −3 = 3(−1 + 0i)

so R = 6
√

3 and 6θ = (2k + 1)π.
This computation shows that we get

± 6
√

3i 6
√

3
(
±
√

3
2 ±

1
2i
)

as roots.
Since

( 6
√

3i)4 = 3 4
6 = 3 1

2 3 1
6 = 6
√

3
√

3
so we finally get that all the roots of f(x) can be obtained by adjoining 6

√
3i to Q.

Namely, if α = 6
√

3i, then the roots of f are

±α, ±α4 ± α

Namely, Q(α) is the splitting field for f .
Since we already noted that f is separable, we get that |Gal(Q(α)/Q)| = [Q(α) : Q] = 6

since the minimal polynomial of α is x6 + 3.
Now, we need only prove that Gal(Q(α)/Q) is non-abelian.
However, this is straightforward since we already wrote down the roots of f .
If

τ : Q(α)→ Q(α)
α 7→ −α
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and

σ : Q(α)→ Q(α)
α 7→ α4 + α

Note that both of these maps exist since f is irreducible and separable so Gal(f) is
transitive (for any two roots of f , there exists an automorphism sending one to the other).

Finally,
τ(σ(α)) = τ(α4 + α) = α4 − α

and
σ(τ(α)) = σ(−α) = −α4 − α

so the two maps do not commute.
Therefore, Gal(f) is non-abelian and since the only non-abelian group of order 6 is S3

we are done.
�
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Problem 2.

(a) Let G be a group of order pqr, where p < q < r are primes. Show that G contains
a normal subgroup of index p.

(b) Determine up to isomorphism all groups of order 3 · 7 · 13.

Solution.

(a) By Lagrange’s theorem, for all p||G|, there exists a subgroup N of order p. Now, we
will show that if p is the smallest prime dividing |G| and [G : N ] = p then N is normal.

Claim 1. If p is the smallest prime dividing |G| and [G : N ] = p, then N
is normal.

Proof. Assume not. Then there exists g ∈ G with g /∈ N such that
N 6= gNg−1. Let N g = gNg−1.
Now, as sets, we have that

|NN g| = |N ||N g|
|N ∩N g|

.

If G = NN g then g−1 = n1gn2g
−1 and so n−1

1 n−1
2 = g ∈ N , an contradic-

tion. Namely, |G| > |NN g|.
However, we finally have that

|NN g| = |N ||N g|
|N ∩N g|

< |G| = p|N |

and so namely,
|N g|
|N ∩N g|

< p

Since p is the smallest prime dividing |G|, there cannot be any elements of
order smaller than p and so namely, |N g| = |N∩N g| and sinceN∩N g ⊂ N g,
we get that N ∩N g = N g.
Namely, N = N g. This is a contradiction again and so no such g exists. �

Therefore, from the claim, N is normal and it exists by Lagrange.

(b) Abelian: Z3 × Z7 × Z13 by the fundamental classification theorem of Abelian Groups.
Now, using the Sylow Theorems, which state that np ≡ 1 mod p and that np|m with
|G| = pkm.
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Thus, n7 ≡ 1 mod 7 and n7|3 · 13. Since 7 - 12, and 7 - 38, n7 = 1.
Finally, n13 = 1 trivially by the same reasoning.
Thus, G contains exactly one normal Sylow subgroup of orders 7, 13. Note that any
Sylow 3-subgroups are isomorphic to Z3,Z7,Z13 respectively.
Now, we begin the classificiation. Starting with a normal Sylow-subgroup, we will take
automorphisms of that Sylow subgroup and see how those act on the product of the
remain two Sylow subgroups.
Then we note that from (a), P7P13 is a normal subgroup of G.
First, if G has a normal Sylow 3-subgroup, then Aut(Z3) ∼= Z∗3 ∼= Z2. Since there are
no order two elements of Z7 × Z13 and so this yields nothing. Namely, there are no
non-trivial homomorphisms ϕ : Z7 × Z13 → Z2

Second, Aut(Z7) ∼= Z6 has two elements of order 3,

α1 : Z7 → Z7 α2 : Z7 → Z7

b 7→ b2 b 7→ b4

Note that α2 = α2
1

Thus, we can let

ψ1 : Z3 × Z13 → Z6

(1, 0) 7→ 2 = α1

(0, 1) 7→ 0 = Id

be a non-trivial homomorphism.
Let

Z3 × Z13 = 〈a〉 × 〈c〉 Z7 = 〈b〉

Then ψ1(a, 0)(b) = α1(b) = b2 and ψ1(0, c)(b) = Id(b) = b. Finally, for ψ1, this gives the
relation

aba−1 = ψ1(a)(b) = b2 =⇒ ab = b2a

and
cbc−1 = b =⇒ cb = bc.

Thus, we obtain the presentation

Z7oψ1(Z3×Z13) ∼= 〈a, b, c | a3 = b7 = c13 = 1, ac = ca, ab = b2a, cb = bc〉 ∼= (Z7oψ1Z3)×Z13

and similarly for ψ2,

ψ2 : Z3 × Z13 → Z6

(1, 0) 7→ 4 = α2

(0, 1) 7→ 0 = Id
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Now, we note that

ϕ : Z3 × Z13 → Z3 × Z13

(1, 0) 7→ (2, 0)
(0, 1) 7→ (0, 1)

is an automorphism of Z3×Z13 and since ψ2 = ψ1 ◦ϕ, we have that ψ1 and ψ2 generate
isomorphic semi-direct products.
Third, Aut(Z13) ∼= Z12 which has 2 elements of order 3 and no elements of order 7 call
them β1, β2 with β1(c) = c3 and β2(c) = c9.
Let ψ3 : Z3 × Z7 → Z12 be the map where ψ3(a)(c) = β1(c) = c3 and ψ3(b)(c) = c

Similarly, ψ4(a)(c) = c9 and ψ4(b)(c) = c. As from the previous case, letting ϕ(1, 0) =
(2, 0) and ϕ(0, 1) = (0, 1), we get hat ψ4 = ψ3 ◦ϕ and so again, the semi-direct products
will be isomorphic.
This gives one presentation:

Z13oψ3(Z3×Z7) ∼= 〈a, b, c | a3 = b7 = c13 = 1, ab = ba, ac = c3a, bc = cb〉 ∼= (Z13oψ3Z3)×Z7

.
Fourth P7P13 ∼= Z7 × Z13 is also a normal subgroup. Aut(Z7 × Z13) ∼= Z6 × Z12.
Thus, we have

ψ5 : Z3 → Z6 × Z12

1 7→ (2, 0) = (α1, Id)
ψ6 : Z3 → Z6 × Z12

1 7→ (4, 0) = (α2, Id)
ψ7 : Z3 → Z6 × Z12

1 7→ (0, 4) = (Id, β1)
ψ8 : Z3 → Z6 × Z12

1 7→ (0, 8) = (Id, β2)
ψ9 : Z3 → Z6 × Z12

1 7→ (2, 4) = (α1, β1)
ψ10 : Z3 → Z6 × Z12

1 7→ (2, 8) = (α1, β2)
ψ11 : Z3 → Z6 × Z12

1 7→ (4, 4) = (α2, β1)
ψ12 : Z3 → Z6 × Z12

1 7→ (4, 8) = (α2, β2)
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Where α1 : Z6 → Z6 is defined by α1(1) = 2, α2(1) = 4, β1 : Z13 → Z13 is defined by
β1(1) = 3, and β2(1) = 9.
Since α2

1 = α2, and β2
1 = β2, it is clear to see that each of these homomorphisms pairs

up with another one via ϕ : Z3 → Z3 defined by ϕ(1) = 2. For example, ψ6 = ψ5 ◦ ϕ.
Now, let Z3 = 〈a〉, Z7 = 〈b〉 and Z13 = 〈c〉 as before. We note that the ψ5 and ψ6 which
generate isomorphic semi-direct products will generate the same group as ψ2 from the
second part. This is because, a will commute with c and aba−1 = ψ5(a)(b) = α1(b) = b2.
Similarly, ψ7 and ψ8 generate the same group as ψ3 from the third part.
Finally, this will yield two sets of non-ismorphic groups. First, one defined by ψ9, with
relations aba−1 = ψ9(a)(b) = α1(b) = b2 and aca−1 = ψ9(a)(c) = c3, which gives

(Z7 × Z13) oψ9 Z3 ∼= 〈a, b, c | a3 = b7 = c13 = 1, bc = cb, ab = b2a, ac = c3a〉.

And the other non-isomophic group has relations defined by aba−1 = ψ10(a)(b) = b2

and aca−1 = ψ10(a)(c) = c9, which gives

(Z7 × Z13) oψ10 Z3 ∼= 〈a, b, c | a3 = b7 = c13 = 1, bc = cb, ab = b2a, ac = c9a〉.

Note: that to verify that ψ9 and ψ10 do indeed generate non-isomorphic groups we turn
to a stronger theorem of Taunt in Remarks on the Isomorphism Problem in Theories of
Construction of Finite Groups.
The theorem states that:

If |N | and |H| are comprime, then

N oψ1 H
∼= N oψ2 H

if and only if there exists α ∈ Aut(N) and β ∈ Aut(H) such that

(ψ1 ◦ β)(h) = α ◦ ψ2(h) ◦ α−1 ∈ Aut(N)

for all h ∈ H.

In this case, because Aut(N) ∼= Z6 × Z12 which is abelian. Namely, α ◦ ψ2(h) ◦ α−1 =
ψ2(h).
Therefore, we have that two homomorphisms generate isomorphic semi-direct products,
if and only if they differ by an isomorphism of Z3. Since there are only two isomoprhisms
of Z3, it is easy to verify that ψ9 and ψ10 do not generate isomorphic semi-direct products.
Fifth We can also define a normal subgroup P3P13 since both P3 and P13 normal in G
and intersect trivially, P3P13 ∼= Z3 × Z13 is normal in G.
However, Aut(Z3 × Z13) ∼= Z2 × Z12 has no elements of order 7.
Similarly, Aut(Z3 × Z7) ∼= Z2 × Z6 has no elements of order 13.
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As we have now ruled out all possible normal subgroups of G, we can con-
clude that we have found all of the isomorphism classes. Listed out, the four
non-abelian groups and one abelian group are

Groups of order 3 · 7 · 13:

Z3 × Z7 × Z13

Z7 oψ1 Z3 × Z13 ∼= 〈a, b, c | a3 = b7 = c13 = 1, ac = ca, ab = b2a, cb = bc〉

Z13 oψ3 Z3 × Z7 ∼= 〈a, b, c | a3 = b7 = c13 = 1, ab = ba, ac = c3a, bc = cb〉

(Z7 × Z13) oψ9 Z3 ∼= 〈a, b, c | a3 = b7 = c13 = 1, bc = cb, ab = b2a, ac = c3a〉

(Z7 × Z13) oψ10 Z3 ∼= 〈a, b, c | a3 = b7 = c13 = 1, bc = cb, ab = b2a, ac = c9a〉

�
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Problem 3. Let R be a commutative Noetherian ring, and let I, J and K be ideals of
R. We say I is irreducible if I = J ∩K =⇒ I = J or I = K.

(a) Show that every ideal of R is a finite intersection of irreducible ideals.

(b) Show that every irreducible ideal is primary. (An ideal I of R is primary if R/I 6= 0,
and every zero-divisor in R/I is nilpotent.)

Solution.

(a) Assume not. Let I be an ideal of R which is not a finite intersection of irreducibles.
Then, there exists ideals J1 and J2 such that I = J1 ∩K1 with I ( J1 and I ( K1.
Note that if J1 and K1 do not exist, then I = J1 ∩K implies I = J1 or I = K1 and so
I is itself irreducible, a contradiction.
Now, because I is not a finite intersection of irreducibles, it must be that either J1 or
K1 is also not a finite intersection of irreducibles. (If both were such an intersection,
then I would be as well).
WLOG, take J1 to be not a finite intersection of irreducibles. However, by the same
argument as before, we can write J1 = J2 ∩K2 with J1 ( J2 and J1 ( K2.
Namely, we obtain an ascending chain

I ( J1 ( J2 ( · · ·

which must terminate because R is Noetherian.
However, if the chain terminates at Jn, so Jm = Jn, then this implies that there do
not exist any ideals J and K such that Jn ( J ∩K and Jn ( J and Jn ( K. Else, we
could call Jn+1 = J .
Thus, Jn is irreducible, which is a contradiction.

(b) Let I be an irrediucible proper ideal of R. Then R/I 6= 0.
Let 0 6= a ∈ R/I be a zero divisor. Then there exists 0 6= b ∈ R/I such that
ab = 0 ∈ R/I so namely, ab ∈ I with a /∈ I and b /∈ I.
Now, we note that this implies that b ∈ Ann(a) ⊂ Ann(a2) ⊂ Ann(a3) ⊂ · · · since if
ab = 0 then akb = ak−10 = 0.
Now, because R is Noetherian and quotients of Noetherian rings are also Noetherian,
we have that R/I is Noetherian. Namely, the chain

Ann(a) ⊂ Ann(a2) ⊂ Ann(a3) ⊂ · · ·

must terminate.
Say the chain terminates at Ann(an) so Ann(am) = Ann(an) for all m ≥ n.
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Now, let b ∈ Ann(a) and x ∈ (b) ∩ (an). Then x = rb = san. However, then
0 = rba = san+1 and so s ∈ Ann(an+1) = Ann(an) and so x = san = 0.
Thus, (b) ∩ (an) = (0) = I. However, I is irreducible so either I = (b) or I = (an).
Since b /∈ I by assumption, it must be that I = (an) and so namely, an = 0 ∈ R/I.
Thus, every zero-divisior is nilpotent.

�

9



Kayla Orlinsky
Spring 2010

Problem 4. Let A be a finite-dimensional algebra over a field K, such that for every
a ∈ A, a7 = a. Show that A is a direct product (sum?) of fields. Which fields can arise?

Solution. First, we note that K ⊂ A and so the fact that a7 = a for all a ∈ A forces k7 = k
for all k ∈ K.

Namely, K ∼= F7.
Now, because A is a finite dimensional vector space, it is Artinian (because all ideals are

finite-dimensional subspaces of A so infinite chains cannot exist).
Now, let a ∈ J(A) the Jacobson radical of A. Then a6 ∈ J(A) because J(A) is an ideal

of A.
However, J(A) is quasi-invertible so there exists b ∈ A such that

b(1− a6) = 1.

However, this implies that

b(1− a6)a = a =⇒ b(a− a7) = a =⇒ a = 0

so J(A) = (0).
Therefore, by Artin-Wedderburn, A can be written as a finite direct sum of matrix

algebras over division rings. Namely,

A ∼= Mn1(D1)⊕ · · · ⊕Mnl
(Dl) Dl division rings over K.

Now, because Di is a division ring over K, it must be a field extension of K. However,
since A has the property that a7 = a for all a ∈ A, each d ∈ Di satisfies this property as well
so Di = K for all i.

Now, because there exist non-zero nilpotent elements in any matrix ring, it must be that
ni = 1 for all i.

Namely,

A ∼=
l⊕

i=1
K.

�
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Problem 5. Let G and H be finitely generated abelian groups such that G⊗Z H = 0.
Show that G and H are finite and have relatively prime orders.

Solution. By the fundamental theorem of finitely generated abelian groups, we can write

G ∼= Zs ⊕ Zn1 ⊕ · · · ⊕ Znk

H ∼= Zt ⊕ Zm1 ⊕ · · · ⊕ Zml

Now, because tensor product distributes across direct sums, we have that

G⊗Z H = (Zs ⊕ Zn1 ⊕ · · · ⊕ Znk
)⊗Z (Zt ⊕ Zm1 ⊕ · · · ⊕ Zml

)

= (Zs ⊗Z Zt)
k⊕
i=1

(Zni
×Z Zt)

l⊕
j=1

(Zs ⊗Z Znj
)
⊕
i,j

(Zni
⊗Z Zmj

)

= 0

Since this is only possible if each individual tensor product is zero, we immediately see
that s = t = 0. Therefore, we need only show that Zn ⊗Z Zm = 0 implies that n and m are
coprime. In fact, we will show something far stronger:

Claim 2. Zn ⊗Z Zm ∼= Zd with d = gcd(m,n).

Proof. To do this, we let f : Zn × Zm → Zd defined by f(a, b) = (a mod d, b
mod d) which is well defined because d = gcd(m,n).

Now, by the universal property of tensor products, because Zd is abelian,
there exists a map ϕ : Zn ⊗Z Zm → Zd such that f = ϕ ◦ i where i : Zn × Zm →
Zn ⊗Z Zm defined by i(a, b) = a⊗ b.

Now, if f(a, b) = (0, 0) then d|a and d|b. Therefore,

n

d
(a⊗ b) = n

a

d
⊗ b = 0 a/d has order dividing n

and similarly,
(a⊗ b)m

d
= a⊗ b

d
m = 0

Therefore, the order of a⊗ b divides n/d and m/d. However, d = gcd(m,n)
so n/d and m/d are coprime so a⊗ b has order 1 and is trivial.

Thus, ker(f) ⊂= ker(ϕ ◦ i) ⊂ ker(i). However, clearly ker(i) ⊂ ker(ϕ ◦ i) so
ker(f) = ker(i) and therefore, ker(ϕ) = (0).
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Finally, f is certainly surjective since d|n and d|m so ϕ must be surjective
as well.

Therefore, ϕ is an isomorphism. �

Finally, from the claim, Zn⊗ZZm = 0 forces gcd(n,m) = 1 and so ni and mj are coprime
for all i, j. Namely, |G| and |H| are coprime.

�
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Problem 6. Let S and T be diagonalizable endomorphisms of a finite dimensional
complex vector space. If S and T commute show that they are polynomials in each other.

Solution. First, we note that it is necessary that either S or T has distinct eigenvalues.

For example, I =
[
1 0
0 1

]
and A =

[
1 0
0 0

]
are both diagonalizable matrices, and so

represent diagonalizable endomorphisms from R2 → R2. Furthermore, IA = A = AI so both
matrices commute.

However, An = A for all n and so if I is a polynomial in A it is of the form I = aA+ bI
which implies that I = a

1−bA which is a contradiction.
Now, assume WLOG, that S has distinct eigenvalues.
Then the minimal polynomial of S is the characteristic polynomial of degree n by Cayley.
Now, let M be the space of all matrices which commute with S.
It is immediate that M is a subspace of Mn(C) since it is closed under addition and

scalar multiplication. Namely, if S commutes with A and B, then

S(aA+ bB) = SaA+ SbB = aAS + bBS = (aA+ bB)S.

Now, we note that S commutes with itself so Sn ∈M for all n ∈ N.

Claim 3. M has dimension n and {I, S, S2, ..., Sn−1} is a basis for M.

Proof. First, because S has minimal polynomial of degree n, this set is certainly
linearly independent in Mn(C) and so it is in M as well.

Therefore, deg(M) ≥ n.
Now, let T commute with S. Let x be an eigenvector of S with eigenvalue

λ.
Then

S(Tx) = TSx = Tλx = λTx

so Tx is also an eigenvector of S with eigenvalue λ.
However, the eigenvalues of S are all distinct, so the eigenvectors of S

associated to λ generate a 1-dimensional subspace. Namely, there exists γ so
Tx = γx.

Therefore, the eigenvectors of S are the same as those of T .
Namely, S and T are simultaneously diagonalizable so there exists a P

invertible such that PSP−1 = D1 and PTP−1 = D2.
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Thus,

M = {A ∈Mn(C) |AS = SA}
= {P−1DP ∈Mn(C) |DD1 = D1D}
∼= M ′ ⊂ {D ∈Mn(C) |D diagonal }

so namely, dim(M) ≤ n.
Since M has dimension n and {I, S, S2, ..., Sn−1} is linearly independent in

M , then it forms a basis for M . �

Finally, from the claim, T ∈M and so T is a linear combination of basis elements and
so T is a polynomial in S.

Similarly for S being a polynomial in T . �
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Problem 7. What are the prime ideals of Z[x]? What are the maximal ideals? Carefully
explain your answers.

Solution. Prime Clearly, (0), (p), (f(x)), (p, f(x)) are all prime whenever f(x) is irreducible
in Z[x] which is a UFD.

This is because

Z[x]/(p) ∼= Zp[x] PID because Zp is a field

so namely, Z[x] is a domain.
Similarly, if f(x) is irreducible, then Z[x]/(f(x)) is a domain. This is because if g(x) is

a zero divisor in Z[x]/(f(x)), then there exists h1(x) /∈ (f(x)) and h2(x) /∈ (f(x)) such that
g(x)h1(x) = f(x)h2(x). However, f(x) irreducible in Z[x] which is a UFD implies that f(x)
is prime. So this implies that f(x)|g(x) or f(x)|h1(x). Since f(x) - h1(x) by the assumption
that h1(x) /∈ (f(x)), it must be that g(x) ∈ (f(x)) and so g(x) = 0 ∈ Z[x]/(f(x)).

Finally, (p, f(x)) is prime for similar reasons as the first two.
Now, assume that P is a non-zero prime ideal of Z[x]. If f(x) ∈ P is irreducible and

constant, then f = p for a prime p, else Z[x]/P will not be a domain. Therefore, if every
f ∈ P is constant, then P = (p) for some prime p.

Next, let f(x) ∈ P be non-constant and irreducible. Note that such an f must exist,
else f(x) = g(x)h(x) and so because P is prime, either g(x) ∈ P or h(x) ∈ P . In either
case, because f can have only a finite number of irreducible factors, we can proceed until P
contains an irreducible element.

Now, we note that if P ∩Z is a prime ideal of Z since if ab ∈ P ∩Z then either a ∈ P or
b ∈ P and certainly a or b is in Z.

Therefore, P ∩ Z = (0) or P ∩ Z = (p) for p prime.
If P does not contain p, then P/(p) ∼= P and Z[x]/(p) ∼= Zp[x] which is a PID. Therefore,

P/(p) = (h(x)) ∼= P and so because f is irreducible and f ∈ P P = (f(x)).
If P does contain p, then by the exact same reasoning, P/(p) = (f(x)) and so P =

(f(x), p) since every h ∈ P is of the form fk1 + pk2.
Therefore, the above list are the only possible prime ideals of Z[x].
Maximal Now, if M is a maximal ideal of Z[x], then M is prime and Z[x]/M is a field.

Since the only prime ideal in our above list which satisfies this criteria is (f(x), p), we have
that the maximal ideals are of the form (f(x), p) for f irreducible and p prime. �
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