Kayla Orlinsky
 Algebra Exam Fall 2010

Problem 1. Use Sylow's Theorems to show that any group of order $\left(99^{2}-4\right)^{3}$ is solvable.

Solution. First, we decompose the number.

$$
\begin{aligned}
99^{2}-4 & =(100-1)^{2}-4 \\
& =10,000-200+1-4 \\
& =10,000-200-3 \\
& =9,800-3 \\
& =9,797 \\
& =97 \cdot 101
\end{aligned}
$$

Since both 97 and 101 are prime, $\left(99^{2}-4\right)^{3}=97^{3} \cdot 101^{3}$.
Now, it is merely tedious to check that, by the Sylow theorems, $n_{97} \mid 101^{3}$ and $n_{97} \equiv 1$ $\bmod 97$ implies that $n_{97}=1$. Since the Sylow- 97 subgroups P_{97} is a p group, it has non-trivial center by the class equation and so we obtain a subnormal series for P_{97}.

Namely,

$$
1 \leq Z\left(P_{97}\right) \leq P_{97}
$$

since $Z\left(P_{97}\right)=P_{97}$ so P_{97} is abelian, or $\left|Z\left(P_{97}\right)\right|=97,97^{2}$ in which case $P_{97} / Z\left(P_{97}\right)$ is abelian.
In any case, P_{97} is solvable.
Finally, since G / P_{97} is also a p-group of order 101^{3}, it will be solvable for the same reason.

Thus, G contains a normal solvable subgroup such that G / N is solvable and so G is solvable.

Problem 2. For any finite group G and positive integer m, let $n_{G}(m)$ be the number of elements g of G that satisfy $g^{m}=e_{G}$. If A and B are finite abelian groups so that $n_{A}(m)=n_{B}(m)$ for all m, show that as groups $A \cong B$.

Solution. By the fundamental theorem of Abelian groups, we can write

$$
\begin{aligned}
& A \cong\left(\mathbb{Z}_{p_{1}^{\alpha_{1}}}\right)^{n_{1}} \oplus \cdots \oplus\left(\mathbb{Z}_{p_{k}^{\alpha_{k}}}\right)^{n_{k}} \\
& B \cong\left(\mathbb{Z}_{z_{1}^{\beta_{1}}}\right)^{m_{1}} \oplus \cdots \oplus\left(\mathbb{Z}_{q_{l}^{\beta_{l}}}\right)^{m_{l}}
\end{aligned}
$$

with p_{i}, q_{j} primes, α_{i}, β_{i} distinct and n_{i}, m_{j} not zero. We note that $N_{A}(m), N_{B}(m) \geq 1$ for all m since e_{A} and e_{B} will always be counted.

Now, $N_{A}\left(p_{i}\right)>1$ since each copy of $\mathbb{Z}_{p_{i}{ }_{i}}$ contains an element of order p_{i} by Lagrange's theorem.

However, $N_{A}\left(p_{i}\right)=N_{B}\left(p_{i}\right)$ and so then B contains a non-trivial element with order dividing p_{i}. Namely, B contains an element of order p_{i}.

Since p_{i} is prime and the q_{i} are primes, it must be that $p_{i}=q_{j}$ for some j.
Since this holds for all p_{i} and q_{j}, we can conclude that $k=l$ and $p_{i}=q_{i}$.
Now, $N_{A}\left(p_{i}^{\alpha_{i}}\right)=n_{i}\left(p_{i}^{\alpha_{i}}-1\right)+1$ since, if $g \in A$ satisfies that $g^{p_{i}^{\alpha_{i}}}=e_{A}$, then $g \in \mathbb{Z}_{p_{i}^{\alpha_{i}}}$. Since there are $p_{i}^{\alpha_{i}}-1$ non-identity elements in each copy, and n_{i} copies plus 1 identity element, we conclude the above value.

In fact, $N_{A}\left(p_{i}^{n}\right)=n_{i}\left(p_{i}^{\alpha_{i}}-1\right)+1$ for all $n \geq \alpha_{i}$.
Therefore, $\beta_{i}=\alpha_{i}$ for all i. Else, if $N_{B}\left(p_{i}^{\beta_{i}}\right)$ would be larger or smaller than $N_{A}\left(p_{i}^{\alpha_{i}}\right)$.
Finally,
However, then

$$
N_{A}\left(p_{i}^{\alpha_{i}}\right)=n_{i}\left(p_{i}^{\alpha_{i}}-1\right)+1=m_{i}\left(p_{i}^{\alpha_{i}}-1\right)+1=N_{B}\left(p_{i}^{\alpha_{i}}\right)
$$

and so $m_{i}=n_{i}$ for all i.
Therefore, $A \cong B$.

Problem 3. If $g(x)=x^{5}+2 \in \mathbb{Q}[x]$, for \mathbb{Q} the field of rational numbers, compute the Galois group of a splitting field L over \mathbb{Q} of $g(x)$. How many subfields of L containing \mathbb{Q} are Galois over \mathbb{Q} ?

Solution. First, if $g(z)=0$ then $z^{5}=-2$. Letting $z=R e^{i \theta}$ we get that $R=\sqrt[6]{2}$ and $5 \theta=(2 k+1) \pi$ so, letting $z=e^{i \frac{\pi}{5}}$, we have that the roots of g are $R z,-R z^{2}, R z^{3},-R z^{4}, R z^{5}$.

Since $R z^{5}=-2=-R \zeta^{5}$ where ζ is a primitive $5^{\text {th }}$-root of unity, we can let $z=-\zeta$.
Thus, the splitting field for g is $L=\mathbb{Q}(R, \zeta)$.
Now, it is clear that $R \zeta$ has minimal polynomial g and so

$$
[L: \mathbb{Q}]=[L: \mathbb{Q}(R \zeta)][\mathbb{Q}(R \zeta): \mathbb{Q}]=[L: \mathbb{Q}(R \zeta)] 5
$$

and similarly, ζ has minimal polynomial $x 4+x^{3}+x^{2}+x+1$ and so

$$
[L: \mathbb{Q}]=[L: \mathbb{Q}(\zeta)][\mathbb{Q}(\zeta): \mathbb{Q}]=4[\mathbb{Q}(\zeta): \mathbb{Q}]
$$

Thus, $20 \mid[\mathbb{Q}(\zeta): \mathbb{Q}]$ and since $[\mathbb{Q}(\zeta): \mathbb{Q}] \geq 20$ we have that $[\mathbb{Q}(\zeta): \mathbb{Q}]=20$.
Now, g is separable, the extension is Galois and so $|\operatorname{Gal}(g)|=[L: \mathbb{Q}]=20$.
Now, we must work to identify $G=\operatorname{Gal}(g)$.
First, let

$$
\begin{aligned}
\sigma: L & \rightarrow L & \tau: L & \rightarrow L \\
R & \mapsto R \zeta & R & \mapsto R \\
\zeta & \mapsto \zeta & \zeta & \mapsto \zeta^{3}
\end{aligned}
$$

Then both of these are automorphisms of L and furthermore, they do not commute since

$$
\begin{aligned}
& \sigma(\tau(R))=\sigma(R)=R \zeta \\
& \tau(\sigma(R))=\tau(R \zeta)=R \zeta^{3}
\end{aligned}
$$

we have that G is not abelian.
Now,

$$
\tau^{4}(\zeta)=\tau^{3}\left(\zeta^{3}\right)=\tau^{2}\left(\zeta^{4}\right)=\tau\left(\zeta^{2}\right)=\zeta
$$

we have that τ is an element of order 4 and so G contains $\langle\tau\rangle \cong \mathbb{Z}_{4}$ as a subgroup.
Now, by the Sylow Theorems, $n_{5} \equiv 1 \bmod 5$ and $n_{5} \mid 4$ so $n_{5}=1$. Namely, G has one Sylow 5 -subgroup and it is normal.

Therefore,

$$
0 \longrightarrow P_{5} \longrightarrow G \longrightarrow P_{4} \longrightarrow 0
$$

is split because $P_{5} \cap P_{4}=\{e\}$ and so $\left|P_{5} P_{4}\right|=\frac{\left|P_{5}\right|\left|P_{4}\right|}{\left|P_{5} \cap P_{4}\right|}=\frac{5 \cdot 4}{1}=20=|G|$ and so

$$
G \cong P_{5} \rtimes P_{4} \cong \mathbb{Z}_{5} \rtimes \mathbb{Z}_{4} .
$$

Finally, by the Galois Correspondence Theorem, to count the number of Galois extensions, we need to determine number of normal subgroups of G.

This requires exactly determining G up to isomorphism.
Let $\varphi: \mathbb{Z}_{4} \rightarrow \operatorname{Aut}\left(\mathbb{Z}_{5}\right) \cong \mathbb{Z}_{4}$. We have already seen that $\langle\tau\rangle \cong P_{4} \cong \mathbb{Z}_{4}$ and it is easy to show that $\langle\sigma\rangle=P_{5} \cong \mathbb{Z}_{5}$

Then because G can be characterized as a semi-direct product, $\tau \sigma \tau^{-1}=\varphi(\tau)$.
Therefore, since

$$
\tau\left(\sigma\left(\tau^{-1}(R)\right)\right)=\tau(\sigma(R))=\tau(R \zeta)=R \zeta^{3}=\sigma^{3}(R)
$$

Thus,

$$
G \cong\left\langle\sigma, \tau \mid \sigma^{5}=\tau^{4}=1, \tau \sigma \tau^{-1}=\sigma^{3}\right\rangle
$$

Now, we must count normal subgroups of G.
The trivial subgroup as well as G itself are both normal subgroups and so L and \mathbb{Q} are both Galois extensions of \mathbb{Q}.

We already have that P_{5} is a normal subgroup and P_{4} is not, so that adds one more. Note that P_{4} is not normal since the above computation for G gave that

$$
\sigma^{-1} \tau \sigma=\sigma^{2} \tau \notin P_{4}
$$

Namely,

$$
\sigma\left(\tau\left(\sigma^{-1}(R)\right)\right)=\sigma\left(\tau\left(R \zeta^{4}\right)\right)=\sigma\left(R \zeta^{2}\right)=R \zeta^{3} \neq \tau^{i}
$$

for any i.
Finally, if G has a subgroup of order 10 it will be normal since it will have index 2 which is the smallest prime dividing $|G|$. (To see a proof of this see Spring 2010, Problem 2, Claim 1).

Now, if H is a subgroup of G of order 10 , then it necessarily contains a copy of P_{5} and since P_{5} is the unique subgroup of G of order $5, \sigma \in H$.

Now, it is not difficult to check that this forces $H=\left\langle\sigma, \tau^{2}\right\rangle$ since if H must contain some power of τ^{i} with $i \neq 1$ (else $H=G$).

Thus, H is the unique normal subgroup of G of order 10 .
Now, G is not a direct product since it is non-abelian and is defined as the semi-direct product of two abelian groups. Therefore, if G has a normal subgroup K of order 2 it must be contained in H, else $|H K|=\frac{|H||K|}{|H \cap K|}=\frac{10 \cdot 2}{1}=|G|$ and so $H K \cong H \times K \cong G$.

Now, if K is normal in G, then it must be normal in H and since $K \cong Q_{2}$ the Sylow 2-subgroup of H, it suffices to check if $n_{2}=1$ with $n_{2}=$ the number of Sylow 2-subgroups of H.

However, $n_{2} \neq 1$ since $\left\langle\tau^{2}\right\rangle$ and $\left\langle\sigma^{2} \tau^{2}\right\rangle$ both represent distinct Sylow 2-subgroups of H. This is because

$$
\left(\sigma^{2} \tau^{2}\right)^{2}=\sigma^{2} \tau^{2} \sigma^{2} \tau^{2}=\sigma^{2} \tau \sigma \tau^{3}=\sigma^{2} \sigma^{3} \tau^{4}=1
$$

Thus, $n_{2} \neq 1$ and so G has no normal subgroups of degree 2 .
Finally, the total number of Galois extensions of \mathbb{Q} contained in L is $2+1+1=4$ which are associated to the trivial subgroup, G itself, P_{5} which is G 's Sylow 5 -subgroup, and H the normal subgroup in G of order 10.

Problem 4. Let P be a minimal prime ideal in the commutative ring R with 1 ; that is, if Q is a prime ideal in R and if $Q \subset P$, then $Q=P$. Show that each $x \in P$ is a zero divisor in R.

Solution. Let $S=R \backslash P$ as a set. Since P is a prime ideal, if $a, b \in R \backslash P$ then $a b \in R \backslash P$ (else if $a b \in P$ then $a \in P$ or $b \in P$ which is a contradiction).

Thus, S is closed under multiplication and since $0 \notin S$ (because $0 \in P$), $R^{\prime}=S^{-1} R$ is a well defined ring.

Now, we claim that $P R^{\prime}=\left\{\left.\frac{p}{s} \right\rvert\, p \in P, s \in S\right\}$ is the unique maximal ideal of R^{\prime}.

Claim 1. $P R^{\prime}$ is the unique maximal ideal of R^{\prime}.

Proof. Let Q be an ideal of R^{\prime}. If there exists some $\frac{q}{s} \in Q$ such that $\frac{q}{s} \notin P R^{\prime}$, then $q \notin P$. However, then $q \in S$ and so $\frac{q}{q}=1 \in Q$ and namely, $Q=R^{\prime}$.

Therefore, all proper ideals of R^{\prime} are contained in $P R^{\prime}$.

Claim 2. $P R^{\prime}$ is the unique prime ideal of R^{\prime}.

Proof. Now, assume that there is a Q prime ideal of R^{\prime}. By the previous claim, $Q \subset P^{\prime} R$. Thus, if $q \in Q$ then $\frac{p}{s} \in P R^{\prime}$ so we have that $\frac{p}{s}=q \in Q$ for some q.

Thus, $p=q s \in Q S$ and so $q s \in P$. Therefore, $q \in P$ or $s \in P$.
If $s \in P$ then $\frac{s}{s}=1 \in P R^{\prime}$ which is a contradiction since $P \neq R$. Thus, $q \in P$ and so namely, $Q S \in P$. Since Q was assumed to be prime, $Q S$ will also be a prime ideal of R and so $P=Q S$. Therefore, $Q=P R^{\prime}$.

Finally, we use the fact that the nilradical of R^{\prime}, which is the intersection of all prime ideals of R^{\prime}, which is exactly the set of nilpotent elements of R^{\prime}, is $P R^{\prime}$ (the only prime ideal of R^{\prime}).

Therefore, every element of $P R^{\prime}$ is nilpotent, and

$$
\left(\frac{p}{s}\right)^{n}=\frac{p^{n}}{s^{n}}=0 \Longrightarrow p^{n}=0
$$

because S is closed under multiplication and does not contain 0 so namely, $s^{n} \neq 0$ for all $s \in S$ and all n.

Therefore, every element of P is nilpotent.

Problem 5. Let $R=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ with $n \geq 3$ and \mathbb{C} the field of complex numbers. Consider the ideal I of R defined by

$$
I=\left(x_{1} \cdots x_{n-1}-x_{n}, x_{1} \cdots x_{n-2} x_{n}-x_{n-1}, \ldots, x_{2} \cdots x_{n}-x_{1}\right)
$$

so the generators of I are obtained by subtracting each x_{j} from the product of the others. Show that ther are fixed positive integers s and t so that for each $0 \leq i \leq n,\left(x_{i}^{s}-x_{i}\right)^{t} \in I$. (Hint: Consider the product of the generators of I.)

Solution. We examine $V(I)$.
First, if $x_{i}=0$ for any i, then $x_{k}=0$ for all k. This is immediate since $x_{i}=$ $x_{1} x_{2} \cdots x_{i-1} x_{i+1} \cdots x_{n-1} x_{n}$ for all i.

Now, taking $x_{i} \neq 0$ for all i, we have that

$$
\begin{aligned}
x_{i} & =x_{1} \cdots x_{i-1} x_{i+1} \cdots x_{n} \\
x_{i+1} & =x_{1} \cdots x_{i} x_{i+2} \cdots x_{n} \\
\frac{x_{i+1}}{x_{1} \cdots x_{i-1} x_{i+2} \cdots x_{n}} & =x_{i} \\
& =x_{1} \cdots x_{i-1} x_{i+1} \cdots x_{n} \\
1 & =x_{1}^{2} \cdots x_{i-1}^{2} x_{i+2}^{2} \cdots x_{n}^{2} \\
& =\frac{x_{i}^{2}}{x_{i+1}^{2}} \\
x_{i}^{2} & =x_{i+1}^{2} \quad \text { for all } i .
\end{aligned}
$$

Therefore, as long as $x_{i} \neq 0$ for all i,

$$
1=x_{i}^{2(n-1)}
$$

so namely, the x_{i} are equal to $2 n-2$-roots of unity.
Namely,

$$
x_{i}=x_{i}^{2 n-1}
$$

for all i. That is to say that $x_{i}^{2 n-1}-x_{i} \in \sqrt{I}$ for all i and so namely, for each i, there exists a t such that $\left(x_{i}^{2 n-1}-x_{i}\right)^{t} \in I$.

Problem 6. Let R be a right artinian algebra over an algebraically closed field F. Show that R is algebraic over F of bounded degree. That is, show there is a fixed positive integer m so that for any $r \in R$ there is a non $g_{r}(x) \in F[x]$ with $g_{r}(r)=0$ and with $\operatorname{deg} g \leq m$.

Solution. First, we note that $J(R / J(R))=0$ trivially.
Now, there is a correspondence between maximal ideals of $R / J(R)$ and max ideals of R containing $J(R)$. However, $J(R) \subset M$ for all M maximal ideals of R by definition and so there is a $1-1$ correspondence between max ideals of R and max ideals of $J(R)$.

Now, we claim that $R / J(R)$ has only finitely many maximal ideals.
Let

$$
M_{1} \supset M_{1} M_{2} \supset \cdots
$$

be a descending chain of maximal ideals of $R / J(R)$. Because R is artinian, $R / J(R)$ is also artinian since quotients of artinian rings are artinian and so the chain terminates.

However, if the chain terminates at $M_{1} \cdots M_{n}$, then these must be the only maximal ideals of $R / J(R)$.

Claim 3. M_{1}, \ldots, M_{n} are the only ideals of $R / J(R)$.

Proof. Assume not, then if $x \in M_{1} \cdots M_{n}$ and there is some maximal ideal of $R / J(R)$ such that $x \notin M$, we have that $M M_{1} \cdots M_{n} \subsetneq M_{1} \cdots M_{n}$ and therefore extends the chain which is a contradiction.

Now, let

$$
\begin{aligned}
\varphi: R / J(R) & \rightarrow \bigoplus_{i=1}^{n} \frac{R / J(R)}{M_{i}} \\
r & \mapsto\left(r+M_{1}, \ldots, r+M_{n}\right)
\end{aligned}
$$

Then φ is injective since clearly

$$
\operatorname{ker} \varphi \subset \bigcap M_{i}=J(R / J(R))=0
$$

Furthermore, φ is clealry surjective so $R / J(R)$ is semi-simple since $(R / J(R)) / M_{i}$ is a field for all i.

Therefore, by Artin-Wedderburn,

$$
R / J(R) \cong M_{n_{1}}\left(D_{1}\right) \oplus \cdots \oplus M_{n_{k}}\left(D_{k}\right)
$$

for some integers n_{i} and some division rings over F, D_{i}.
Namely, $R / J(R)$ is finite dimensional over F.

Now, because the center of $D_{i}, Z\left(D_{i}\right)$ is a field, by Schur's Lemma, $\psi: F \rightarrow Z\left(D_{i}\right)$ is either trivial or an isomoprhism.

However, F being commutative (by definition of field) and $R / J(R)$ being an algebra over F, we have that

$$
F \in Z(R /(J(R))) \cong Z\left(M_{n_{1}}\left(D_{1}\right)\right) \oplus \cdots \oplus Z\left(M_{n_{k}}\left(D_{k}\right) 0 \cong Z\left(D_{1}\right) \oplus Z\left(D_{n}\right)\right.
$$

and so namely, we can define a projection map to send $F \rightarrow Z\left(D_{i}\right)$ for all i. This map must be non-trivial for all i since $F \in Z(R /(J(R)))$ and so $F \cong Z\left(D_{i}\right)$ for all i.

Now, let $\alpha \in D_{i}$. Since $[F(\alpha): F]<\infty$ (because $\left[D_{i}: F\right]<\infty$ by semi-simpleness of $R / J(R)$), we have that α is algebraic over F and thus satisfies a monic irreducible polynomial with coefficients in F. However, F is algebraically closed and so the only monic irreducible polynomials over F are linear. Namely, $\alpha \in F$.

Thus, $D_{i}=F$ for all i.
Now, $R / J(R)$ is a finite dimensional F-algebra and so $R / J(R)$ is algebraic over F. That is, $a+J(R)$ is algebaric over F for all $a \in R$.

Finally, $J(R)$ is algebraic over F because R is artinian and so $J(R)$ is nilpotent. Namely, x satisfies $x^{n}=0$ for all $x \in J(R)$.

Since the sum of two algebraic elements is algebraic, this implies that $t=a+x$ and x is algebraic so $t-x=a$ is algebraic for all $a \in R$, and for all $x \in J(R)$.

