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Problem 1. Use Sylow’s Theorems to show that any group of order (992−4)3 is solvable.

Solution. First, we decompose the number.

992 − 4 = (100− 1)2 − 4
= 10, 000− 200 + 1− 4
= 10, 000− 200− 3
= 9, 800− 3
= 9, 797
= 97 · 101

Since both 97 and 101 are prime, (992 − 4)3 = 973 · 1013.

Now, it is merely tedious to check that, by the Sylow theorems, n97|1013 and n97 ≡ 1
mod 97 implies that n97 = 1. Since the Sylow-97 subgroups P97 is a p group, it has non-trivial
center by the class equation and so we obtain a subnormal series for P97.

Namely,
1 ≤ Z(P97) ≤ P97

since Z(P97) = P97 so P97 is abelian, or |Z(P97)| = 97, 972 in which case P97/Z(P97) is abelian.
In any case, P97 is solvable.
Finally, since G/P97 is also a p-group of order 1013, it will be solvable for the same

reason.
Thus, G contains a normal solvable subgroup such that G/N is solvable and so G is

solvable. �
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Problem 2. For any finite group G and positive integer m, let nG(m) be the number
of elements g of G that satisfy gm = eG. If A and B are finite abelian groups so that
nA(m) = nB(m) for all m, show that as groups A ∼= B.

Solution. By the fundamental theorem of Abelian groups, we can write

A ∼= (Zpα1
1

)n1 ⊕ · · · ⊕ (Zpαk
k

)nk

B ∼= (Z
z
β1
1

)m1 ⊕ · · · ⊕ (Z
q
βl
l

)ml

with pi, qj primes, αi, βi distinct and ni,mj not zero. We note that NA(m), NB(m) ≥ 1
for all m since eA and eB will always be counted.

Now, NA(pi) > 1 since each copy of Zpαii contains an element of order pi by Lagrange’s
theorem.

However, NA(pi) = NB(pi) and so then B contains a non-trivial element with order
dividing pi. Namely, B contains an element of order pi.

Since pi is prime and the qi are primes, it must be that pi = qj for some j.
Since this holds for all pi and qj, we can conclude that k = l and pi = qi.
Now, NA(pαii ) = ni(pαii − 1) + 1 since, if g ∈ A satisfies that gp

αi
i = eA, then g ∈ Zpαii .

Since there are pαii − 1 non-identity elements in each copy, and ni copies plus 1 identity
element, we conclude the above value.

In fact, NA(pni ) = ni(pαii − 1) + 1 for all n ≥ αi.
Therefore, βi = αi for all i. Else, if NB(pβii ) would be larger or smaller than NA(pαii ).
Finally,
However, then

NA(pαii ) = ni(pαii − 1) + 1 = mi(pαii − 1) + 1 = NB(pαii )

and so mi = ni for all i.
Therefore, A ∼= B. �
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Problem 3. If g(x) = x5 + 2 ∈ Q[x], for Q the field of rational numbers, compute the
Galois group of a splitting field L over Q of g(x). How many subfields of L containing Q
are Galois over Q?

Solution. First, if g(z) = 0 then z5 = −2. Letting z = Reiθ we get that R = 6
√

2 and
5θ = (2k+ 1)π so, letting z = ei

π
5 , we have that the roots of g are Rz,−Rz2, Rz3,−Rz4, Rz5.

Since Rz5 = −2 = −Rζ5 where ζ is a primitive 5th-root of unity, we can let z = −ζ.
Thus, the splitting field for g is L = Q(R, ζ).
Now, it is clear that Rζ has minimal polynomial g and so

[L : Q] = [L : Q(Rζ)][Q(Rζ) : Q] = [L : Q(Rζ)]5

and similarly, ζ has minimal polynomial x4 + x3 + x2 + x+ 1 and so

[L : Q] = [L : Q(ζ)][Q(ζ) : Q] = 4[Q(ζ) : Q]

Thus, 20|[Q(ζ) : Q] and since [Q(ζ) : Q] ≥ 20 we have that [Q(ζ) : Q] = 20.
Now, g is separable, the extension is Galois and so |Gal(g)| = [L : Q] = 20.
Now, we must work to identify G = Gal(g).
First, let

σ : L→ L

R 7→ Rζ

ζ 7→ ζ

τ : L→ L

R 7→ R

ζ 7→ ζ3

Then both of these are automorphisms of L and furthermore, they do not commute since

σ(τ(R)) = σ(R) = Rζ

τ(σ(R)) = τ(Rζ) = Rζ3

we have that G is not abelian.
Now,

τ 4(ζ) = τ 3(ζ3) = τ 2(ζ4) = τ(ζ2) = ζ

we have that τ is an element of order 4 and so G contains 〈τ〉 ∼= Z4 as a subgroup.
Now, by the Sylow Theorems, n5 ≡ 1 mod 5 and n5|4 so n5 = 1. Namely, G has one

Sylow 5-subgroup and it is normal.
Therefore,

0 P5 G P4 0
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is split because P5 ∩ P4 = {e} and so |P5P4| = |P5||P4|
|P5∩P4| = 5·4

1 = 20 = |G| and so

G ∼= P5 o P4 ∼= Z5 o Z4.

Finally, by the Galois Correspondence Theorem, to count the number of Galois extensions,
we need to determine number of normal subgroups of G.

This requires exactly determining G up to isomorphism.
Let ϕ : Z4 → Aut(Z5) ∼= Z4. We have already seen that 〈τ〉 ∼= P4 ∼= Z4 and it is easy to

show that 〈σ〉 = P5 ∼= Z5

Then because G can be characterized as a semi-direct product, τστ−1 = ϕ(τ).
Therefore, since

τ(σ(τ−1(R))) = τ(σ(R)) = τ(Rζ) = Rζ3 = σ3(R).

Thus,
G ∼= 〈σ, τ |σ5 = τ 4 = 1, τστ−1 = σ3〉.

Now, we must count normal subgroups of G.
The trivial subgroup as well as G itself are both normal subgroups and so L and Q are

both Galois extensions of Q.
We already have that P5 is a normal subgroup and P4 is not, so that adds one more.

Note that P4 is not normal since the above computation for G gave that

σ−1τσ = σ2τ /∈ P4.

Namely,
σ(τ(σ−1(R))) = σ(τ(Rζ4)) = σ(Rζ2) = Rζ3 6= τ i

for any i.
Finally, if G has a subgroup of order 10 it will be normal since it will have index 2 which

is the smallest prime dividing |G|. (To see a proof of this see Spring 2010, Problem 2,
Claim 1).

Now, if H is a subgroup of G of order 10, then it necessarily contains a copy of P5 and
since P5 is the unique subgroup of G of order 5, σ ∈ H.

Now, it is not difficult to check that this forces H = 〈σ, τ 2〉 since if H must contain some
power of τ i with i 6= 1 (else H = G).

Thus, H is the unique normal subgroup of G of order 10.
Now, G is not a direct product since it is non-abelian and is defined as the semi-direct

product of two abelian groups. Therefore, if G has a normal subgroup K of order 2 it must
be contained in H, else |HK| = |H||K|

|H∩K| = 10·2
1 = |G| and so HK ∼= H ×K ∼= G.

Now, if K is normal in G, then it must be normal in H and since K ∼= Q2 the Sylow
2-subgroup of H, it suffices to check if n2 = 1 with n2 = the number of Sylow 2-subgroups of
H.
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However, n2 6= 1 since 〈τ 2〉 and 〈σ2τ 2〉 both represent distinct Sylow 2-subgroups of H.
This is because

(σ2τ 2)2 = σ2τ 2σ2τ 2 = σ2τστ 3 = σ2σ3τ 4 = 1.

Thus, n2 6= 1 and so G has no normal subgroups of degree 2.
Finally, the total number of Galois extensions of Q contained in L is 2 + 1 + 1 = 4 which

are associated to the trivial subgroup, G itself, P5 which is G’s Sylow 5-subgroup, and H the
normal subgroup in G of order 10. �
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Problem 4. Let P be a minimal prime ideal in the commutative ring R with 1; that is,
if Q is a prime ideal in R and if Q ⊂ P, then Q = P . Show that each x ∈ P is a zero
divisor in R.

Solution. Let S = R\P as a set. Since P is a prime ideal, if a, b ∈ R\P then ab ∈ R\P
(else if ab ∈ P then a ∈ P or b ∈ P which is a contradiction).

Thus, S is closed under multiplication and since 0 /∈ S (because 0 ∈ P ), R′ = S−1R is a
well defined ring.

Now, we claim that PR′ =
{
p
s
| p ∈ P, s ∈ S

}
is the unique maximal ideal of R′.

Claim 1. PR′ is the unique maximal ideal of R′.

Proof. Let Q be an ideal of R′. If there exists some q
s
∈ Q such that q

s
/∈ PR′,

then q /∈ P . However, then q ∈ S and so q
q

= 1 ∈ Q and namely, Q = R′.

Therefore, all proper ideals of R′ are contained in PR′. �

Claim 2. PR′ is the unique prime ideal of R′.

Proof. Now, assume that there is a Q prime ideal of R′. By the previous claim,
Q ⊂ P ′R. Thus, if q ∈ Q then p

s
∈ PR′ so we have that p

s
= q ∈ Q for some q.

Thus, p = qs ∈ QS and so qs ∈ P . Therefore, q ∈ P or s ∈ P.
If s ∈ P then s

s
= 1 ∈ PR′ which is a contradiction since P 6= R. Thus,

q ∈ P and so namely, QS ∈ P . Since Q was assumed to be prime, QS will also
be a prime ideal of R and so P = QS. Therefore, Q = PR′. �

Finally, we use the fact that the nilradical of R′, which is the intersection of all prime
ideals of R′, which is exactly the set of nilpotent elements of R′, is PR′ (the only prime ideal
of R′).

Therefore, every element of PR′ is nilpotent, and(
p

s

)n
= pn

sn
= 0 =⇒ pn = 0

because S is closed under multiplication and does not contain 0 so namely, sn 6= 0 for all
s ∈ S and all n.

Therefore, every element of P is nilpotent. �
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Problem 5. Let R = C[x1, ..., xn] with n ≥ 3 and C the field of complex numbers.
Consider the ideal I of R defined by

I = (x1 · · ·xn−1 − xn, x1 · · ·xn−2xn − xn−1, ..., x2 · · ·xn − x1)

so the generators of I are obtained by subtracting each xj from the product of the others.
Show that ther are fixed positive integers s and t so that for each 0 ≤ i ≤ n, (xsi −xi)t ∈ I.
(Hint: Consider the product of the generators of I.)

Solution. We examine V (I).
First, if xi = 0 for any i, then xk = 0 for all k. This is immediate since xi =

x1x2 · · ·xi−1xi+1 · · ·xn−1xn for all i.
Now, taking xi 6= 0 for all i, we have that

xi = x1 · · ·xi−1xi+1 · · ·xn
xi+1 = x1 · · ·xixi+2 · · ·xn

xi+1

x1 · · ·xi−1xi+2 · · ·xn
= xi

= x1 · · ·xi−1xi+1 · · ·xn
1 = x2

1 · · ·x2
i−1x

2
i+2 · · ·x2

n

= x2
i

x2
i+1

x2
i = x2

i+1 for all i.

Therefore, as long as xi 6= 0 for all i,

1 = x
2(n−1)
i

so namely, the xi are equal to 2n− 2-roots of unity.
Namely,

xi = x2n−1
i

for all i. That is to say that x2n−1
i − xi ∈

√
I for all i and so namely, for each i, there exists

a t such that (x2n−1
i − xi)t ∈ I. �
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Problem 6. Let R be a right artinian algebra over an algebraically closed field F . Show
that R is algebraic over F of bounded degree. That is, show there is a fixed positive
integer m so that for any r ∈ R there is a non gr(x) ∈ F [x] with gr(r) = 0 and with
deg g ≤ m.

Solution. First, we note that J(R/J(R)) = 0 trivially.
Now, there is a correspondence between maximal ideals of R/J(R) and max ideals of R

containing J(R). However, J(R) ⊂ M for all M maximal ideals of R by definition and so
there is a 1− 1 correspondence between max ideals of R and max ideals of J(R).

Now, we claim that R/J(R) has only finitely many maximal ideals.
Let

M1 ⊃M1M2 ⊃ · · ·

be a descending chain of maximal ideals of R/J(R). Because R is artinian, R/J(R) is also
artinian since quotients of artinian rings are artinian and so the chain terminates.

However, if the chain terminates at M1 · · ·Mn, then these must be the only maximal
ideals of R/J(R).

Claim 3. M1, ...,Mn are the only ideals of R/J(R).

Proof. Assume not, then if x ∈ M1 · · ·Mn and there is some maximal ideal of
R/J(R) such that x /∈M , we have that MM1 · · ·Mn (M1 · · ·Mn and therefore
extends the chain which is a contradiction. �

Now, let

ϕ : R/J(R)→
n⊕
i=1

R/J(R)
Mi

r 7→ (r +M1, ..., r +Mn)

Then ϕ is injective since clearly

kerϕ ⊂
⋂
Mi = J(R/J(R)) = 0.

Furthermore, ϕ is clealry surjective so R/J(R) is semi-simple since (R/J(R))/Mi is a field
for all i.

Therefore, by Artin-Wedderburn,

R/J(R) ∼= Mn1(D1)⊕ · · · ⊕Mnk(Dk)

for some integers ni and some division rings over F , Di.
Namely, R/J(R) is finite dimensional over F .
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Now, because the center of Di, Z(Di) is a field, by Schur’s Lemma, ψ : F → Z(Di) is
either trivial or an isomoprhism.

However, F being commutative (by definition of field) and R/J(R) being an algebra
over F , we have that

F ∈ Z(R/(J(R))) ∼= Z(Mn1(D1))⊕ · · · ⊕ Z(Mnk(Dk)0 ∼= Z(D1)⊕ Z(Dn)

and so namely, we can define a projection map to send F → Z(Di) for all i. This map must
be non-trivial for all i since F ∈ Z(R/(J(R))) and so F ∼= Z(Di) for all i.

Now, let α ∈ Di. Since [F (α) : F ] < ∞ (because [Di : F ] < ∞ by semi-simpleness of
R/J(R)), we have that α is algebraic over F and thus satisfies a monic irreducible polynomial
with coefficients in F . However, F is algebraically closed and so the only monic irreducible
polynomials over F are linear. Namely, α ∈ F.

Thus, Di = F for all i.
Now, R/J(R) is a finite dimensional F -algebra and so R/J(R) is algebraic over F . That

is, a+ J(R) is algebaric over F for all a ∈ R.
Finally, J(R) is algebraic over F because R is artinian and so J(R) is nilpotent. Namely,

x satisfies xn = 0 for all x ∈ J(R).
Since the sum of two algebraic elements is algebraic, this implies that t = a+ x and x is

algebraic so t− x = a is algebraic for all a ∈ R, and for all x ∈ J(R). �
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