

# Spring 2025 Solutions

## Problem 1

Let  $u \not\equiv 0$  be a  $C^2(\mathbb{R}^n)$  function ( $n > 1$ ). Define

$$m_x(r) = r^{1-n} \int_{\partial B(x,r)} u(y) dS(y)$$

(a) Show that

$$\frac{dm_x(r)}{dr} = r^{1-n} \int_{B(x,r)} \Delta u(y) dy$$

(b) Let  $u$  solve  $-\Delta u = \phi(u)$ . For some continuous function  $\phi$ . Assume that  $u(x) \geq 1$  for all  $x \in \mathbb{R}^n$ , and that  $\phi(\xi) \geq 0$  for all  $\xi \geq 1$ . Using the result from part (a) above, prove that if  $u(x_0) = 1$  for some  $x_0 \in \mathbb{R}^n$ , then  $u(x) \equiv 1$  for all  $x \in \mathbb{R}^n$ .

**(a)**

proof:

Reparametrize the sphere with  $y = x + r\omega$ , with  $\omega \in S^{n-1}$ , then  $dS(y) = r^{n-1} d\sigma(\omega)$  (where  $d\sigma$  is the surface measure on  $S^{n-1}$ , and  $\nu(y) = \omega$  is the outward unit normal on  $\partial B(x,r)$ ). Thus

$$m_x(r) = r^{1-n} \int_{\partial B(x,r)} u(y) dS = \int_{S^{n-1}} u(x + r\omega) d\sigma(\omega)$$

Furthermore, note that

$$\frac{d}{dr} m_x(r) = \int_{S^{n-1}} \frac{d}{dr} u(x + r\omega) d\sigma(\omega)$$

Now we compute  $\frac{d}{dr} u(x + r\omega)$

$$\frac{d}{dr} u(x + r\omega) = \nabla u(x + r\omega) \cdot \omega$$

In case the above is not clear, when we differentiate the above, we are differentiating the composition:  $r \mapsto u(x + r\omega)$ . This is not a partial derivative of  $u$  with respect to a coordinate of  $u$ , but rather the derivative along a curve in  $\mathbb{R}^n$ . Thus by the chain rule

$$\begin{aligned} \frac{d}{dr} u(x + r\omega) &= \sum_{i=1}^n \frac{\partial}{\partial y_i} u(x + r\omega) \cdot \frac{d}{dr} (x_i + r\omega_i) = \sum_{i=1}^n u_{y_i}(x + r\omega) \omega_i \\ &= \nabla u(x + r\omega) \cdot \omega \end{aligned}$$

As a result

$$\begin{aligned} \frac{d}{dr} m_x(r) &= \int_{S^{n-1}} \nabla u(x + r\omega) \cdot \omega d\sigma(\omega) = r^{1-n} \int_{\partial B(x,r)} \nabla u(y) \cdot \nu(y) dS(y) \\ &= r^{1-n} \int_{\partial B(x,r)} \partial_\nu(y) dS(y) \end{aligned}$$

Then by

Gauss-Green

**Evans p.711**

(i) Suppose  $u \in C^1(\overline{U})$ . Then

$$\int_U u_{x_i} dx = \int_{\partial U} u \nu^i dS \quad (i = 1, \dots, n).$$

(ii) - also called the divergence theorem

$$\int_U \operatorname{div} u \, dx = \int_{\partial U} u \cdot \nu \, dS$$

for each vector field  $u \in C^1(\overline{U}; \mathbb{R}^n)$ .

#PDE

(divergence theorem)

$$\frac{d}{dr} m_x(r) = r^{1-n} \int_{\partial B(x,r)} \partial_\nu u \, dS = r^{1-n} \int_{B(x,r)} \operatorname{div}(\nabla u) \, dy = r^{1-n} \int_{B(x,r)} \Delta u \, dy$$

■

**(b)**

proof:

At  $x_0$ , we have  $\Delta u = -\phi(u) \leq 0$ , since  $u \geq 1$  and  $\phi \geq 0$  on  $[1, \infty)$ . Plugging this into part (a)'s result

$$\frac{d}{dr} m_{x_0}(r) = r^{1-n} \int_{B(x_0,r)} \Delta u = -r^{1-n} \int_{B(x_0,r)} \phi(u) \leq 0$$

Recall that

$$m_{x_0}(r) = r^{1-n} \int_{\partial B(x_0,r)} u \, dS = n\alpha(n) \mathbf{f}_{\partial B(x_0,r)} u \, dS$$

Thus, since  $u \geq 1$  everywhere we have

$$m_{x_0}(r) \geq n\alpha(n)$$

for all  $r > 0$ . Then, by continuity,  $\lim_{r \downarrow 0} m_{x_0}(r) = n\alpha_n u(x_0) = n\alpha(n)$ . Thus

$$m_{x_0}(r) \equiv n\alpha(n) \quad \text{for all } r > 0$$

As a result

$$\frac{d}{dr} m_{x_0}(r) = 0 = -r^{1-n} \int_{B(x_0,r)} \phi(u(y)) \, dy$$

for all  $r > 0$ . Hence

$$\begin{aligned} \int_{B(x_0,r)} \phi(u(y)) \, dy &= 0 \quad \text{for all } r > 0 \\ \implies \phi(u(y)) &= 0 \quad \text{for all } y \in \mathbb{R}^n \end{aligned}$$

Thus  $\Delta u \equiv 0$  and we have that  $u$  is harmonic on  $\mathbb{R}^n$ . Since  $u \geq 1$  everywhere and  $u(x_0) = 1$ ,  $x_0$  is a global minimum of the function and by the maximum principle we have that  $u \equiv 1$  on  $\mathbb{R}^n$ . ■

## Problem 2

Use the method of characteristics to solve the following partial differential equation:

$$\begin{aligned} \partial_t u - u \partial_x u &= 3u, \quad x \in \mathbb{R}, \quad t > 0, \\ u(0, x) &= u_0(x), \quad x \in \mathbb{R} \end{aligned}$$

proof:

Using the method of characteristics

$$\frac{dx}{ds} = -z, \quad \frac{dt}{ds} = 1, \quad \frac{dz}{ds} = 3z$$

With initial data

$$x(0, r) = r, \quad t(0, r) = 0, \quad z(0, r) = u_0(r)$$

Thus

$$z = e^{3s}u_0(r), \quad t = s, \quad x = -\frac{z}{3} + \frac{u_0(r)}{3} + r$$

In order to express  $z$  in terms of  $x$  and  $t$  we solve for  $r$  to obtain

$$r = x + \frac{z}{3} - \frac{z}{3e^{3s}}$$

Thus

$$u(x, t) = e^{3t}u_0 \left( x + u(x, t) \left( 1 - \frac{e^{-3t}}{3} \right) \right)$$

## Problem 3

3. Let  $\Omega \subset \mathbb{R}^n$  ( $n \geq 1$ ) be a bounded domain with smooth boundary. Assume that  $u(t, x) \geq 0$  is a smooth function solving

$$\begin{cases} \partial_t u - \Delta u = -u^4 & \text{in } \Omega \\ \frac{\partial u}{\partial \nu} = 0 & \text{on } \partial\Omega \end{cases}$$

with  $u|_{t=0} = u_0$ . Here  $\nu$  is the unit normal to the boundary. Let

$$E(t) = \int_{\Omega} u^2(t, x) dx.$$

Show that there exists a constant  $C > 0$  such that for each  $t > 0$

$$E(t) \leq \frac{1}{(E^{-\frac{3}{2}}(0) + Ct)^{\frac{2}{3}}}$$

proof:

We use the energy identity to take

$$\frac{d}{dt} E(t) = 2 \int_{\Omega} uu_t = 2 \int_{\Omega} u(\Delta u - u^4) = 2 \int_{\Omega} u\Delta u - 2 \int_{\Omega} u^5$$

by

Green's Formulas

Let  $u, v \in C^2(\bar{U})$

(i)

$$\int_U \Delta u \, dx = \int_{\partial U} \frac{\partial u}{\partial \nu} \, dS$$

(ii)

$$\int_U \nabla v \cdot \nabla u \, dx = - \int_U u \Delta v \, dx + \int_{\partial U} u \frac{\partial v}{\partial \nu} \, dS$$

(iii)

$$\int_U u \Delta v - v \Delta u \, dx = \int_{\partial U} u \frac{\partial v}{\partial \nu} - v \frac{\partial u}{\partial \nu} \, dS$$

#PDE

we have

$$\int_{\Omega} u \Delta u = \int_{\partial\Omega} u \frac{dy}{d\nu} \overset{0}{dS} - \int_{\Omega} |\nabla u|^2$$

Thus

$$E'(t) = -2 \int_{\Omega} |\nabla u|^2 - 2 \int_{\Omega} u^5 \leq -2 \int_{\Omega} u^5$$

Using

Holder's Inequality

Let  $1 \leq p, q \leq \infty$  such that  $\frac{1}{p} + \frac{1}{q} = 1$ , then if  $f \in L^p(U)$  and  $g \in L^q(U)$

$$\int_U |fg| dx \leq \|f\|_{L^p(U)} \cdot \|g\|_{L^q(U)}$$

we have

$$E(t) = \int_{\Omega} u^2 = \int_{\Omega} u^2 \cdot 1 \leq \left( \int_{\Omega} u^5 \right)^{2/5} \left( \int_{\Omega} 1^{5/3} \right) = \left( \int_{\Omega} u^5 \right)^{2/5} |\Omega|^{3/5}$$

As a result  $E(t)^{5/2} |\Omega|^{-3/2} \leq \int_{\Omega} u^5 = -\frac{1}{2} E'(t)$ , thus

$$E'(t) \leq -\frac{2}{|\Omega|^{3/2}} E(t)^{5/2}$$

Lastly, we differentiate  $E(t)^{-3/2}$  to obtain

$$\begin{aligned} \frac{d}{dt} E(t)^{-3/2} &= -\frac{3}{2} E(t)^{-5/2} E'(t) \geq \frac{3}{|\Omega|^{3/2}} \\ \int_0^t \frac{d}{dt} E(t)^{-3/2} dt &= E(t)^{-3/2} - E(0)^{-3/2} \geq \frac{3}{|\Omega|^{3/2}} \\ \implies E(t)^{-3/2} &\geq E(0)^{-3/2} + \frac{3}{|\Omega|^{3/2}} \\ \implies E(t) &\leq \frac{1}{(E(0)^{-3/2} + Ct)^{2/3}} \end{aligned}$$

where  $C = \frac{3}{|\Omega|^{2/3}}$ , which is the desired inequality. ■