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Spring 2023 Solutions
Problem 1

Consider the equation
ui(z,y) + 2uj(z,y) = 2° + 29
2

(a) Find at least one classical solution to this equation in R? such that u(z,z) = =

(b) Is the problem from (a) uniquely solvable?

(a)

proof:

We first set the equation up in the following form to solve via the method of characteristics
F(wvya %D Q) = ui(m, y) + ZUZ(WJJ) - 562 - 2y2 = p2 + 2q2 - 11}2 - 2y2

Now we have that

dx d dz
E:Fpa d_g:an E:pr+qu7
dp dq
E:*Fz*pFu E:*Fy*sz
Thus
dz dy dz 9 5 dp dq
& 9y 8y &2 o 402. L — 9, X _ 4
ds P ds G ds Pt q’ds © ds Y

With initial data z(r,0) = r,y(r,0) = r, 2(r,0) = ¢

Now, we can create a second order differential equation out of z,p and y, g in the following manner

d*z dp d?y dq

A Y P e S

a2 las T g T T
Thus

r = cre® + cze_zs, y= cse® +cie™®

Now based on our initial data we have
z(r,0)=ci+ca=7r, yr,0)=cz3+ca=r

Now we make a selection of ¢y =c3 =r and cs = c4 = 0.
Thus z(r, s) = re and y(r, s) = re**
In order to find admissible initial data we set p(r,0) = 11 and ¢(r,0) = 92 then

F(y1,72, 6(r)s $1,%2) = 97 + 295 —r* — 22 = 0 = ¢} + 295 = 3r°
and

¢'(r) = 71 (r)¢r(r) + 75 (r)a(r) = Pu(r) +9a(r) = 2r

Choosing 91(r) = r,¢2(r) = 7 solves this.
Now observe that

d: d
—p:27‘€2$:>p:1“62s+p0 ,—q:4re43¢q:re4s+qo
ds ds

1/6


af://h1-0
af://h1-1
af://h2-2

Spring 2023 Solutions

Now using our initial data

2s

p(r,0) =7 +py =r=p(r,s) =re* q(r,0)=r+qo=r=q(r,s) =re®

Then
d 2 ,4s 2,8s
—Z:2p2+4q2:27’2e4s+4r2685:\z:Te re + 2
ds 2 2
Plugging in initial data gives us z(r,0) = %2 + ’—22 +zg=r2=2)=0s0 2= w
Notice that then
2 2
T Y
Arys) =u(z,y) = 5 + 5

Which we can easily verify is a solution.
[ |

(b)

Put the Cauchy data on the line T’ = {(z,y) : y = =} with y(r) = (r,7) and ug(r) = . For a first order equation F(z,y,u,p,q) =0

admissible initial slopes (p,q) = (u,,u,) along I' must satisfy the compatibility conditions

F(y(r),uo(r),p,q) =0
ug(r) = py1(r) + q13(7)

Here F = p? + 2¢2 — 22 — 2y% and 4'(r) = (1,1) and uj(r) = 2r. At the point (z,y) = (r,r) these become

P+ 2¢% = 3r?
p+q=2r
Thus we have 3¢q2 — 4rq + r? = 0 whose roots are
=r org=~ =r or o
q= q= 3 b= 3

Thus for every r # 0 there are two distinct pairs

(p,q) = (r,r) and (p,q) = <% g)

Thus the problem is not uniquely solvable. B

Problem 2

Let u be harmonic in the domain U = B(0,4) in R?
(a) Show that if u is bounded then
sup(4 — |z[) - [Vu(z)| < o0

(b) Give an example of u that is harmonic in U and unbounded, but still satisfies the claim from a

(a)
Since u is bounded we have that
u(z) <M forallz € U

Then since u is harmonic, by the

Mean Value Formula
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Evans p.25:
If w € C*(U) is harmonic, then

u(m) = fﬁB(z,r) u(y)ds(y) = fB(w,'r') u dy
for each ball B(z,r) C U

#PDE

we have then
u(z) = JCBB(I,T) u(y)dS(y) = ]cB(m,r) udy
For each ball B(z,r) C B(0,4). Recall that in R™

1

f@B(m,r) u(y)dS(y) = W /63(m,r) u dS(y)

and

In this case (for R?) we have that

alpha(2)
al2)=m
#PDE
alpha(2)
a2)=m
#PDE
= 7 thus
1 1
ule) = wr? B(ar) wdy = 2mr 8B(z,r) wdy

For each ball B(z,r) C B(0,4). We now aim to calculate

IVl = [(ug tz,)| = \fui, +ui,

Derivatives of Harmonic Functions are Harmonic

Since u is harmonic, and

, thus again by the
Mean Value Formula

Evans p.25:
If w € C*(U) is harmonic, then

w(@) = fopar w(v)dS(y) = f py udy
for each ball B(z,r) C U

#PDE

now applied to ug,since u,, itself is harmonic

1 1
U, (z) = —/ Uy, dy = — Ug, dS
mr? B(z,r) wr? 8B(z,r)

For each ball B(z,r) C B(0,4).

Then by

Gauss-Green

Evans p.711



Spring 2023 Solutions
(i) Suppose u € C1(U). Then

/uzidw:/ w'dS (i=1,...,n).
U ou

/divudz:/ u-vdS
U U

(ii) - also called the divergence theorem

for each vector field u € C1(U;R™).

#PDE

we have

1 1 )
Ug dy = — w'dS (i=1,...,n).
Tre JaB(z,r)

1 1

72 JBar)
Next, observe

1

uy (z)| = |— Uy, dS
e e

Since v is the
Unit Normal (nu)

Evans p.710

(i) If 8U is C, then along AU is defined the outward pointing unit normal vector field

The unit normal at any point z° € U is v(z°) = v = (v1,...,vs)
(ii) Let u € CY(U). We call

Ou
ov -’

The (outward) normal derivative of .

#PDE

, we have that

v =1= i <1

< (%)/ ful - |vi] dS < (%)/ lu] dS
r dB(x,r) T dB(x,r)

Lebesgue Integral is Bounded by Measure times Sup

for each 7. Thus

|ta

Then since

For a nonnegative measurable function f, and a measure p
/ fdp < sup f - p(X)
X X
Thus, for any function f and a measure u we have

[ sdu < [ 111au < sup 51 ()

we have that

For each ball B(z,r) C B(0,4).
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Now, as stated previously
|vu‘ = ‘(uzﬂumz)‘ = \/ u§1 +uiz
SO

2 2
V| < aM +4M :2M\/§
T

Next, we take the radius » = 4 — |z|. Then

2MV2
Vil (4 )

Thus

sup (4 — [z]) (Vu())) < 2MV2

proof:

We know that log(|z|) is harmonic for ¢ € R2, thus we re-center the function so that the singularity is on the boundary of the open
ball B(0,4). Thus take

u(z,y) = log(y/ (z — 4)* +y?)

Which is still harmonic in the open ball B(0,4) (but it blows up near the point (4,0) on the boundary). So this function is

harmonic and unbounded.
[ |

Problem 3

Suppose u is a C? function satisfying

U = Au, in R™ x R+,
u(a:,O) = g(x),
ut(z,0) = h(z)

Fix T' > 0 and consider the set
Kp:={(z,t) : 0<t<T, |z|<T—t}

Prove that if g(z) = h(z) = 0 for all z € B(0,T), then u(z,t) = 0 for all (z,t) € Kt

proof:
This is exactly the same as

Finite Propagation Speed
Evans p.84
Let
K(zg,t9) :=={(z,t) : 0<t<tg, |z— x| <to—t}
If uw = u; =0 on B(zo,to) X {t = 0} then u = 0 within the cone K(zo, o)

proof:
Define the Local Energy
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e(t) := % / ul(z,t) + |Du(z, t)?| dz
B(zo,to—t)

with 0 < t < ¢.

By the Differentiation Formula for Moving Regions we have that for smooth u then

d
d 2 2 d 2
— (ui + |Du®|)v-vdS + —(uj - |Dul*)dz
dt OB(zo,to—t) B(zo,to—t) dt
Our velocity of the moving boundary here is v- (¢g —¢)' = —v (thus v-v = —v-v = —1. As a result we have

1
é(t) = / wguy + Du - Duy doz — — / u? + |Du?| dS
Bleoto—t) 2 JoB(wot-to)

Next, by Green's Formulas we have

/ Vu-Vuyde = — / u;Au dz + / uta—udS
B(zo,to—t) B(xo,to—t) dB(wo,to—t) ov

Thus

é(t) = / ug(uy — Au)de — 1 / u? + |Du?|dS
B(zo,to—t) 2 JoB(zo,t~to)

o
+ / w2l ds
AB(zo,to—t) ov

Since u; = 0 on B(zo,to —t) then

0 1
é(t) = / ut—udS — —/ u? + | Du?|dS
OB(aoto—t) OV 2 JoB(aot—to)
ou 1 1
= u—dS — = (u?) — = |Du?|dS
/BB(zO,tg—t) Yov 2( ) 2| |

Now (recall that 4% := v+ Du and |v| = 1)

1 2 1 2
< \ut| . \Du| < -u; + E‘Du|

ou
—

v

by the Cauchy-Schwarz Inequality and Cauchy's Inequality

Now we place this inequality into our last result for é(t) to obtain

é(t) =/ whas - (l(uf) + i|Du2|ds> g/ 0
dB(xo,to—t) ov 2 2 OB(z0,t0—t)

So é(t) < 0; and so e(t) < e(0) = 0 (since ¢t = 0 gives us the region where we assumed us,u = 0) for all 0 < ¢ < tg. Thus us, Du=0
(by the definition of e(t)).

Lastly, u: = 0 implies that u(z,t) is constant in time, and Du = Oimplies u(z,t) is constant in space for all 0 < ¢ < ¢9. Thus
u(z,t) = C for some constant C. Then, from the assumption u = 0 on B(zg,ty) x {¢t = 0}, so in order for u(z,t) to be constant, it

must be equal to 0.

#PDE
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