

Spring 2023 Solutions

Problem 1

Consider the equation

$$u_x^2(x, y) + 2u_y^2(x, y) = x^2 + 2y^2$$

(a) Find at least one classical solution to this equation in \mathbb{R}^2 such that $u(x, x) = x^2$
 (b) Is the problem from (a) uniquely solvable?

(a)

proof:

We first set the equation up in the following form to solve via the method of characteristics

$$F(x, y, z, p, q) = u_x^2(x, y) + 2u_y^2(x, y) - x^2 - 2y^2 = p^2 + 2q^2 - x^2 - 2y^2$$

Now we have that

$$\begin{aligned} \frac{dx}{ds} &= F_p, & \frac{dy}{ds} &= F_q, & \frac{dz}{ds} &= pF_p + qF_q, \\ \frac{dp}{ds} &= -F_x - pF_z, & \frac{dq}{ds} &= -F_y - qF_z \end{aligned}$$

Thus

$$\frac{dx}{ds} = 2p, \frac{dy}{ds} = 4q, \frac{dz}{ds} = 2p^2 + 4q^2, \frac{dp}{ds} = 2x, \frac{dq}{ds} = 4y$$

With initial data $x(r, 0) = r, y(r, 0) = r, z(r, 0) = \phi$

Now, we can create a second order differential equation out of x, p and y, q in the following manner

$$\frac{d^2x}{ds^2} = 2\frac{dp}{ds} = 4x, \quad \frac{d^2y}{ds^2} = 4\frac{dq}{ds} = 16y$$

Thus

$$x = c_1 e^{2s} + c_2 e^{-2s}, \quad y = c_3 e^{4s} + c_4 e^{-4s}$$

Now based on our initial data we have

$$x(r, 0) = c_1 + c_2 = r, \quad y(r, 0) = c_3 + c_4 = r$$

Now we make a selection of $c_1 = c_3 = r$ and $c_2 = c_4 = 0$.

Thus $x(r, s) = r e^{2s}$ and $y(r, s) = r e^{4s}$

In order to find admissible initial data we set $p(r, 0) = \psi_1$ and $q(r, 0) = \psi_2$ then

$$F(\gamma_1, \gamma_2, \phi(r), \psi_1, \psi_2) = \psi_1^2 + 2\psi_2^2 - r^2 - 2r^2 = 0 \Rightarrow \psi_1^2 + 2\psi_2^2 = 3r^2$$

and

$$\phi'(r) = \gamma_1'(r)\psi_1(r) + \gamma_2'(r)\psi_2(r) = \psi_1(r) + \psi_2(r) = 2r$$

Choosing $\psi_1(r) = r, \psi_2(r) = r$ solves this.

Now observe that

$$\frac{dp}{ds} = 2r e^{2s} \Rightarrow p = r e^{2s} + p_0, \quad \frac{dq}{ds} = 4r e^{4s} \Rightarrow q = r e^{4s} + q_0$$

Now using our initial data

$$p(r, 0) = r + p_0 = r \Rightarrow p(r, s) = re^{2s} \quad q(r, 0) = r + q_0 = r \Rightarrow q(r, s) = re^{4s}$$

Then

$$\frac{dz}{ds} = 2p^2 + 4q^2 = 2r^2e^{4s} + 4r^2e^{8s} \Rightarrow z = \frac{r^2e^{4s}}{2} + \frac{r^2e^{8s}}{2} + z_0$$

Plugging in initial data gives us $z(r, 0) = \frac{r^2}{2} + \frac{r^2}{2} + z_0 = r^2 \Rightarrow z_0 = 0$ so $z = \frac{r^2e^{4s} + r^2e^{8s}}{2}$

Notice that then

$$z(r, s) = u(x, y) = \frac{x^2}{2} + \frac{y^2}{2}$$

Which we can easily verify is a solution.

■

(b)

Put the Cauchy data on the line $\Gamma = \{(x, y) : y = x\}$ with $\gamma(r) = (r, r)$ and $u_0(r) = r^3$. For a first order equation $F(x, y, u, p, q) = 0$ admissible initial slopes $(p, q) = (u_x, u_y)$ along Γ must satisfy the compatibility conditions

$$\begin{aligned} F(\gamma(r), u_0(r), p, q) &= 0 \\ u'_0(r) &= p\gamma'_1(r) + q\gamma'_2(r) \end{aligned}$$

Here $F = p^2 + 2q^2 - x^2 - 2y^2$ and $\gamma'(r) = (1, 1)$ and $u'_0(r) = 2r$. At the point $(x, y) = (r, r)$ these become

$$\begin{aligned} p^2 + 2q^2 &= 3r^2 \\ p + q &= 2r \end{aligned}$$

Thus we have $3q^2 - 4rq + r^2 = 0$ whose roots are

$$q = r \quad \text{or} \quad q = \frac{r}{3}, \quad p = r \quad \text{or} \quad \frac{5r}{3}$$

Thus for every $r \neq 0$ there are two distinct pairs

$$(p, q) = (r, r) \text{ and } (p, q) = \left(\frac{5r}{3}, \frac{r}{3}\right)$$

Thus the problem is not uniquely solvable. ■

Problem 2

Let u be harmonic in the domain $U = B(0, 4)$ in \mathbb{R}^2

(a) Show that if u is bounded then

$$\sup(4 - |x|) \cdot |\nabla u(x)| < \infty$$

(b) Give an example of u that is harmonic in U and unbounded, but still satisfies the claim from a

(a)

Since u is bounded we have that

$$u(x) \leq M \text{ for all } x \in U$$

Then since u is harmonic, by the

Mean Value Formula

Evans p.25:

If $u \in C^2(U)$ is harmonic, then

$$u(x) = \int_{\partial B(x,r)} u(y) dS(y) = \int_{B(x,r)} u dy$$

for each ball $B(x,r) \subset U$

#PDE

we have then

$$u(x) = \int_{\partial B(x,r)} u(y) dS(y) = \int_{B(x,r)} u dy$$

For each ball $B(x,r) \subset B(0,4)$. Recall that in \mathbb{R}^n

$$\int_{\partial B(x,r)} u(y) dS(y) = \frac{1}{n\alpha(n)r^{n-1}} \int_{\partial B(x,r)} u dS(y)$$

and

$$\int_{B(x,r)} u dy = \frac{1}{\alpha(n)r^n} \int_{B(x,r)} u dy$$

In this case (for \mathbb{R}^2) we have that

alpha(2)

$$\alpha(2) = \pi$$

#PDE

alpha(2)

$$\alpha(2) = \pi$$

#PDE

$= \pi$ thus

$$u(x) = \frac{1}{\pi r^2} \int_{B(x,r)} u dy = \frac{1}{2\pi r} \int_{\partial B(x,r)} u dy$$

For each ball $B(x,r) \subset B(0,4)$. We now aim to calculate

$$|\nabla u| = |(u_{x_1}, u_{x_2})| = \sqrt{u_{x_1}^2 + u_{x_2}^2}$$

Since u is harmonic, and

Derivatives of Harmonic Functions are Harmonic

, thus again by the

Mean Value Formula

Evans p.25:

If $u \in C^2(U)$ is harmonic, then

$$u(x) = \int_{\partial B(x,r)} u(y) dS(y) = \int_{B(x,r)} u dy$$

for each ball $B(x,r) \subset U$

#PDE

now applied to u_{x_i} since u_{x_i} itself is harmonic

$$u_{x_i}(x) = \frac{1}{\pi r^2} \int_{B(x,r)} u_{x_i} dy = \frac{1}{\pi r^2} \int_{\partial B(x,r)} u_{x_i} dS$$

For each ball $B(x,r) \subset B(0,4)$.

Then by

Gauss-Green

Evans p.711

(i) Suppose $u \in C^1(\bar{U})$. Then

$$\int_U u_{x_i} dx = \int_{\partial U} u \nu^i dS \quad (i = 1, \dots, n).$$

(ii) - also called the divergence theorem

$$\int_U \operatorname{div} u dx = \int_{\partial U} u \cdot \nu dS$$

for each vector field $u \in C^1(\bar{U}; \mathbb{R}^n)$.

#PDE

we have

$$\frac{1}{\pi r^2} \int_{B(x,r)} u_{x_i} dy = \frac{1}{\pi r^2} \int_{\partial B(x,r)} u \nu^i dS \quad (i = 1, \dots, n).$$

Next, observe

$$|u_{x_i}(x)| = \left| \frac{1}{\pi r^2} \int_{\partial B(x,r)} u_{x_i} dS \right| \leq \left(\frac{1}{\pi r^2} \right) \int_{\partial B(x,r)} |u| \cdot |\nu^i| dS$$

Since ν is the

Unit Normal (ν)

Evans p.710

(i) If ∂U is C^1 , then along ∂U is defined the *outward pointing unit normal vector field*

$$\nu = (\nu^1, \dots, \nu^n)$$

The *unit normal at any point* $x^0 \in \partial U$ is $\nu(x^0) = \nu = (\nu_1, \dots, \nu_n)$

(ii) Let $u \in C^1(\bar{U})$. We call

$$\frac{\partial u}{\partial \nu} := \nu \cdot Du$$

The *(outward) normal derivative* of u .

#PDE

, we have that

$$|\nu| = 1 \Rightarrow |\nu^i| \leq 1$$

for each i . Thus

$$|u_{x_i}| \leq \left(\frac{1}{\pi r^2} \right) \int_{\partial B(x,r)} |u| \cdot |\nu^i| dS \leq \left(\frac{1}{\pi r^2} \right) \int_{\partial B(x,r)} |u| dS$$

Then since

Lebesgue Integral is Bounded by Measure times Sup

For a nonnegative measurable function f , and a measure μ

$$\int_X f d\mu \leq \sup_X f \cdot \mu(X)$$

Thus, for any function f and a measure μ we have

$$|\int_X f d\mu| \leq \int_X |f| d\mu \leq \sup_X |f| \cdot \mu(X)$$

we have that

$$|u_{x_i}| \leq \left(\frac{1}{\pi r^2} \right) \int_{\partial B(x,r)} |u| dS \leq \frac{M}{\pi r^2} \cdot n \alpha(n)^{n-1} = \frac{M}{\pi r^2} \cdot 2\pi r = \frac{2M}{r}$$

For each ball $B(x,r) \subset B(0,4)$.

Now, as stated previously

$$|\nabla u| = |(u_{x_1}, u_{x_2})| = \sqrt{u_{x_1}^2 + u_{x_2}^2}$$

so

$$|\nabla u| \leq \sqrt{\frac{4M^2}{r^2} + \frac{4M^2}{r^2}} = \frac{2M\sqrt{2}}{r}$$

Next, we take the radius $r = 4 - |x|$. Then

$$|\nabla u| \leq \left(\frac{2M\sqrt{2}}{4 - |x|} \right)$$

Thus

$$\sup((4 - |x|)(\nabla u(x))) \leq 2M\sqrt{2}$$

■

(b)

proof:

We know that $\log(|x|)$ is harmonic for $x \in \mathbb{R}^2$, thus we re-center the function so that the singularity is on the boundary of the open ball $B(0, 4)$. Thus take

$$u(x, y) = \log(\sqrt{(x - 4)^2 + y^2})$$

Which is still harmonic in the open ball $B(0, 4)$ (but it blows up near the point (4,0) on the boundary). So this function is harmonic and unbounded.

■

Problem 3

Suppose u is a C^2 function satisfying

$$\begin{cases} u_{tt} = \Delta u, & \text{in } \mathbb{R}^n \times \mathbb{R}^+, \\ u(x, 0) = g(x), \\ u_t(x, 0) = h(x) \end{cases}$$

Fix $T > 0$ and consider the set

$$K_T := \{(x, t) : 0 \leq t \leq T, |x| \leq T - t\}$$

Prove that if $g(x) = h(x) = 0$ for all $x \in B(0, T)$, then $u(x, t) = 0$ for all $(x, t) \in K_T$

proof:

This is exactly the same as

Finite Propagation Speed

Evans p.84

Let

$$K(x_0, t_0) := \{(x, t) : 0 \leq t \leq t_0, |x - x_0| \leq t_0 - t\}$$

If $u \equiv u_t \equiv 0$ on $B(x_0, t_0) \times \{t = 0\}$ then $u \equiv 0$ within the cone $K(x_0, t_0)$

proof:

Define the [Local Energy](#)

$$e(t) := \frac{1}{2} \int_{B(x_0, t_0 - t)} u_t^2(x, t) + |Du(x, t)|^2 dx$$

with $0 \leq t \leq t_0$.

By the [Differentiation Formula for Moving Regions](#) we have that for smooth u then

$$\begin{aligned} 2 \frac{d}{dt} e(t) &= \\ \frac{d}{dt} \int_{\partial B(x_0, t_0 - t)} (u_t^2 + |Du|^2) \mathbf{v} \cdot \nu dS + \int_{B(x_0, t_0 - t)} \frac{d}{dt} (u_t^2 \cdot |Du|^2) dx \end{aligned}$$

Our velocity of the moving boundary here is $\nu \cdot (t_0 - t)' = -\nu$ (thus $\mathbf{v} \cdot \nu = -\nu \cdot \nu = -1$). As a result we have

$$\dot{e}(t) = \int_{B(x_0, t_0 - t)} u_t u_{tt} + Du \cdot Du_t dx - \frac{1}{2} \int_{\partial B(x_0, t - t_0)} u_t^2 + |Du|^2 dS$$

Next, by [Green's Formulas](#) we have

$$\int_{B(x_0, t_0 - t)} \nabla u \cdot \nabla u_t dx = - \int_{B(x_0, t_0 - t)} u_t \Delta u dx + \int_{\partial B(x_0, t_0 - t)} u_t \frac{\partial u}{\partial \nu} dS$$

Thus

$$\begin{aligned} \dot{e}(t) &= \int_{B(x_0, t_0 - t)} u_t (u_{tt} - \Delta u) dx - \frac{1}{2} \int_{\partial B(x_0, t - t_0)} u_t^2 + |Du|^2 dS \\ &\quad + \int_{\partial B(x_0, t_0 - t)} u_t \frac{\partial u}{\partial \nu} dS \end{aligned}$$

Since $u_t \equiv 0$ on $B(x_0, t_0 - t)$ then

$$\begin{aligned} \dot{e}(t) &= \int_{\partial B(x_0, t_0 - t)} u_t \frac{\partial u}{\partial \nu} dS - \frac{1}{2} \int_{\partial B(x_0, t - t_0)} u_t^2 + |Du|^2 dS \\ &= \int_{\partial B(x_0, t_0 - t)} u_t \frac{\partial u}{\partial \nu} dS - \frac{1}{2} (u_t^2) - \frac{1}{2} |Du|^2 dS \end{aligned}$$

Now (recall that $\frac{\partial u}{\partial \nu} := \nu \cdot Du$ and $|\nu| = 1$)

$$\left| \frac{\partial u}{\partial \nu} \cdot u_t \right| \leq |u_t| \cdot |Du| \leq \frac{1}{2} u_t^2 + \frac{1}{2} |Du|^2$$

by the [Cauchy-Schwarz Inequality](#) and [Cauchy's Inequality](#).

Now we place this inequality into our last result for $\dot{e}(t)$ to obtain

$$\dot{e}(t) = \int_{\partial B(x_0, t_0 - t)} u_t \frac{\partial u}{\partial \nu} dS - \left(\frac{1}{2} (u_t^2) + \frac{1}{2} |Du|^2 dS \right) \leq \int_{\partial B(x_0, t_0 - t)} 0$$

So $\dot{e}(t) \leq 0$; and so $e(t) \leq e(0) = 0$ (since $t = 0$ gives us the region where we assumed $u_t, u \equiv 0$) for all $0 \leq t \leq t_0$. Thus $u_t, Du \equiv 0$ (by the definition of $e(t)$).

Lastly, $u_t \equiv 0$ implies that $u(x, t)$ is constant in time, and $Du \equiv 0$ implies $u(x, t)$ is constant in space for all $0 \leq t \leq t_0$. Thus $u(x, t) = C$ for some constant C . Then, from the assumption $u \equiv 0$ on $B(x_0, t_0) \times \{t = 0\}$, so in order for $u(x, t)$ to be constant, it must be equal to 0.

#PDE