
Spring 2023 Solutions

Problem 1

(a)
proof:
We first set the equation up in the following form to solve via the method of characteristics

F(x, y, z, p, q) = u2
x(x, y) + 2u2

y(x, y) − x2 − 2y2 = p2 + 2q2 − x2 − 2y2

Now we have that

Thus

dx

ds
= 2p,

dy

ds
= 4q,

dz

ds
= 2p2 + 4q2,

dp

ds
= 2x,

dq

ds
= 4y

With initial data x(r, 0) = r, y(r, 0) = r, z(r, 0) = ϕ

Now, we can create a second order differential equation out of x, p and y, q in the following manner

d2x

ds2
= 2

dp

ds
= 4x,

d2y

ds2
= 4

dq

ds
= 16y

Thus

x = c1e
2s + c2e

−2s, y = c3e
4s + c4e

−4s

Now based on our initial data we have

x(r, 0) = c1 + c2 = r, y(r, 0) = c3 + c4 = r

Now we make a selection of c1 = c3 = r and c2 = c4 = 0.

Thus x(r, s) = re2s and y(r, s) = re4s

In order to find admissible initial data we set p(r, 0) = ψ1 and q(r, 0) = ψ2 then

F(γ1, γ2,ϕ(r),ψ1,ψ2) = ψ2
1 + 2ψ2

2 − r2 − 2r2 = 0 ⇒ ψ2
1 + 2ψ2

2 = 3r2

and

ϕ′(r) = γ ′
1(r)ψ1(r) + γ ′

2(r)ψ2(r) = ψ1(r) + ψ2(r) = 2r

Choosing ψ1(r) = r,ψ2(r) = r solves this.

Now observe that

dp

ds
= 2re2s ⇒ p = re2s + p0 ,

dq

ds
= 4re4s ⇒ q = re4s + q0

Consider the equation

u2
x(x, y) + 2u2

y(x, y) = x2 + 2y2

(a) Find at least one classical solution to this equation in R2 such that u(x,x) = x2

(b) Is the problem from (a) uniquely solvable?

dx

ds
= Fp,

dy

ds
= Fq,

dz

ds
= pFp + qFq,

dp

ds
= −Fx − pFz,

dq

ds
= −Fy − qFz
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Now using our initial data

p(r, 0) = r + p0 = r ⇒ p(r, s) = re2s q(r, 0) = r + q0 = r ⇒ q(r, s) = re4s

Then

dz

ds
= 2p2 + 4q2 = 2r2e4s + 4r2e8s ⇒ z =

r2e4s

2
+

r2e8s

2
+ z0

Plugging in initial data gives us z(r, 0) = r2

2 + r2

2 + z0 = r2 ⇒ z0 = 0 so z = r2e4s+r2e8s

2

Notice that then

z(r, s) = u(x, y) =
x2

2
+

y2

2

Which we can easily verify is a solution.
■

(b)
Put the Cauchy data on the line Γ = {(x, y) : y = x} with γ(r) = (r, r) and u0(r) = r3. For a first order equation F(x, y,u, p, q) = 0

admissible initial slopes (p, q) = (ux,uy) along Γ must satisfy the compatibility conditions

Here F = p2 + 2q2 − x2 − 2y2 and γ ′(r) = (1, 1) and u′
0(r) = 2r. At the point (x, y) = (r, r) these become

Thus we have 3q2 − 4rq + r2 = 0 whose roots are

q = r  or q =
r

3
, p = r  or 

5r

3

Thus for every r ≠ 0 there are two distinct pairs

(p, q) = (r, r) and (p, q) = (
5r

3
,
r

3
)

Thus the problem is not uniquely solvable. ■

Problem 2

(a)
Since u is bounded we have that

u(x) ≤ M   for all x ∈ U

Then since u is harmonic, by the

F(γ(r),u0(r), p, q) = 0

u
′
0(r) = pγ

′
1(r) + qγ

′
2(r)

p2 + 2q2 = 3r2

p + q = 2r

Let u be harmonic in the domain U = B(0, 4) in R2

(a) Show that if u is bounded then

sup(4 − |x|)  ⋅ |∇u(x)| < ∞

(b) Give an example of u that is harmonic in U and unbounded, but still satisfies the claim from a

Mean Value Formula
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we have then

u(x) = ⨍∂B(x,r) u(y)dS(y) = ⨍B(x,r) u dy

For each ball B(x, r) ⊂ B(0, 4). Recall that in Rn

⨍∂B(x,r) u(y)dS(y) =
1

nα(n)rn−1
∫

∂B(x,r)

u dS(y)

and

⨍B(x,r) u dy =
1

α(n)rn
∫
B(x,r)

u dy

In this case (for R2) we have that

= π thus

u(x) =
1

πr2
∫
B(x,r)

u dy =
1

2πr
∫

∂B(x,r)
u dy

For each ball B(x, r) ⊂ B(0, 4). We now aim to calculate

|∇u| = |(ux1
,ux2

)| = √u2
x1

+ u2
x2

Since u is harmonic, and

, thus again by the

now applied to uxi
since uxi

 itself is harmonic

uxi
(x) =

1

πr2
∫
B(x,r)

uxi
 dy =

1

πr2
∫

∂B(x,r)
uxi

 dS

For each ball B(x, r) ⊂ B(0, 4).

Then by

Evans p.25:
If u ∈ C 2(U) is harmonic, then

u(x) = ⨍∂B(x,r) u(y)dS(y) = ⨍B(x,r) u dy

for each ball B(x, r) ⊂ U

#PDE

alpha(2)

α(2) = π

#PDE

alpha(2)

α(2) = π

#PDE

Derivatives of Harmonic Functions are Harmonic

Mean Value Formula

Evans p.25:
If u ∈ C 2(U) is harmonic, then

u(x) = ⨍∂B(x,r) u(y)dS(y) = ⨍B(x,r) u dy

for each ball B(x, r) ⊂ U

#PDE

Gauss-Green

Evans p.711
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we have

1

πr2
∫
B(x,r)

uxi
 dy =

1

πr2
∫

∂B(x,r)
uν i dS (i = 1, … ,n).

Next, observe

Since ν is the

, we have that

|ν| = 1 ⇒ |ν i| ≤ 1

for each i. Thus

|uxi
| ≤ ( 1

πr2
)∫

∂B(x,r)
|u| ⋅ ν i  dS ≤ ( 1

πr2
)∫

∂B(x,r)
|u| dS

Then since

we have that

|uxi
| ≤ (

1

πr2
)∫

∂B(x,r)
|u| dS ≤

M

πr2
⋅ nα(n)n−1 =

M

πr2
⋅ 2πr =

2M

r

For each ball B(x, r) ⊂ B(0, 4).

(i) Suppose u ∈ C 1(U). Then

∫
U

uxi
 dx = ∫

∂U
uν i dS (i = 1, … ,n).

(ii) - also called the divergence theorem

∫
U

div u dx = ∫
∂U

u ⋅ ν dS

for each vector field u ∈ C 1(U ; R
n).

#PDE

–

–

|uxi
(x)| =

1

πr2
∫

∂B(x,r)
uxi

 dS ≤ ( 1

πr2
)∫

∂B(x,r)
|u| ⋅ ν i  dS∣ ∣ ∣ ∣Unit Normal (nu)

Evans p.710

(i) If ∂U is C 1, then along ∂U is defined the outward pointing unit normal vector field

ν = (ν 1, … , νn)

The unit normal at any point x0 ∈ ∂U is ν(x0) = ν = (ν1, … , νn)

(ii) Let u ∈ C 1(U). We call

∂u

∂ν
:= ν ⋅ Du

The (outward) normal derivative of u.

#PDE

–∣ ∣Lebesgue Integral is Bounded by Measure times Sup

For a nonnegative measurable function f, and a measure μ

∫
X

fdμ ≤ sup
X

f ⋅ μ(X)

Thus, for any function f and a measure μ we have

|∫
X

fdμ| ≤ ∫
X

|f|dμ ≤ sup
X

|f| ⋅ μ(X)
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Now, as stated previously

|∇u| = |(ux1
,ux2

)| = √u2
x1

+ u2
x2

so

|∇u| ≤ √ 4M 2

r2
+

4M 2

r2
=

2M√2

r

Next, we take the radius r = 4 − |x|. Then

|∇u| ≤ ( 2M√2

4 − |x|
)

Thus

sup ((4 − |x|) (∇u(x))) ≤ 2M√2

■

(b)
proof:
We know that log(|x|) is harmonic for x ∈ R

2, thus we re-center the function so that the singularity is on the boundary of the open
ball B(0, 4). Thus take

u(x, y) = log(√(x − 4)2 + y2)

Which is still harmonic in the open ball B(0, 4) (but it blows up near the point (4,0) on the boundary). So this function is
harmonic and unbounded.
■

Problem 3

proof:
This is exactly the same as

Suppose u is a C 2 function satisfying

Fix T > 0 and consider the set

KT := {(x, t)  :  0 ≤ t ≤ T ,  |x| ≤ T − t}

Prove that if g(x) = h(x) = 0 for all x ∈ B(0,T ), then u(x, t) = 0 for all (x, t) ∈ KT

⎧⎪⎨⎪⎩utt = Δu, in Rn × R
+,

u(x, 0) = g(x),
ut(x, 0) = h(x)

Finite Propagation Speed

Evans p.84

Let

K(x0, t0) := {(x, t)  :  0 ≤ t ≤ t0,  |x − x0| ≤ t0 − t}

If u ≡ ut ≡ 0 on B(x0, t0) × {t = 0} then u ≡ 0 within the cone K(x0, t0)

proof:
Define the Local Energy
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e(t) :=
1

2
∫
B(x0,t0−t)

u2
t (x, t) + |Du(x, t)2| dx

with 0 ≤ t ≤ t0.

By the Differentiation Formula for Moving Regions we have that for smooth u then

Our velocity of the moving boundary here is ν ⋅ (t0 − t)′ = −ν (thus v ⋅ ν = −ν ⋅ ν = −1. As a result we have

ė(t) = ∫
B(x0,t0−t)

ututt + Du ⋅ Dut dx −
1

2
∫

∂B(x0,t−t0)
u2
t + |Du2| dS

Next, by Green's Formulas we have

∫
B(x0,t0−t)

∇u ⋅ ∇ut dx = −∫
B(x0,t0−t)

utΔu dx + ∫
∂B(x0,t0−t)

ut

∂u

∂ν
dS

Thus

Since ut ≡ 0 on B(x0, t0 − t) then

Now (recall that ∂u
∂ν := ν ⋅ Du and |ν| = 1)

∂u

∂ν
⋅ ut ≤ |ut| ⋅ |Du| ≤

1

2
u2
t +

1

2
|Du|2

by the Cauchy-Schwarz Inequality and Cauchy's Inequality

Now we place this inequality into our last result for ė(t) to obtain

ė(t) = ∫
∂B(x0,t0−t)

ut

∂u

∂ν
dS − ( 1

2
(u2

t ) +
1

2
|Du2|dS) ≤ ∫

∂B(x0,t0−t)

0

So ė(t) ≤ 0; and so e(t) ≤ e(0) = 0 (since t = 0 gives us the region where we assumed ut,u ≡ 0) for all 0 ≤ t ≤ t0. Thus ut,Du ≡ 0

(by the definition of e(t)).

Lastly, ut ≡ 0 implies that u(x, t) is constant in time, and Du ≡ 0implies u(x, t) is constant in space for all 0 ≤ t ≤ t0. Thus
u(x, t) = C for some constant C. Then, from the assumption u ≡ 0 on B(x0, t0) × {t = 0}, so in order for u(x, t) to be constant, it
must be equal to 0.

#PDE

2
d

dt
e(t) =

d

dt
∫

∂B(x0,t0−t)
(u2

t + |Du2|)v ⋅ ν dS + ∫
B(x0,t0−t)

d

dt
(u2

t ⋅ |Du|2)dx

ė(t) = ∫
B(x0,t0−t)

ut(utt − Δu)dx −
1

2
∫

∂B(x0,t−t0)
u2
t + |Du2|dS

+∫
∂B(x0,t0−t)

ut

∂u

∂ν
dS

ė(t) = ∫
∂B(x0,t0−t)

ut

∂u

∂ν
dS −

1

2
∫

∂B(x0,t−t0)
u2
t + |Du2|dS

= ∫
∂B(x0,t0−t)

ut

∂u

∂ν
dS −

1

2
(u2

t ) −
1

2
|Du2|dS∣ ∣ Spring 2023 Solutions
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