
Fall 2025 Solutions

Problem 1

proof:
Since u is harmonic we can apply the

which tells us

|u(x)| = |⨍
B(x,1)

u(y) dy| ≤⨍
B(x,1)

|u(y)| dy =
1

α(n)
∫
B(x,1)

|u(y)| dy ≤
C

α(n)

for all x ∈ R
n and for all B(x, 1) ⊂ R

n. Thus, since u(x) is both harmonic, and bounded on Rn, by

it is a constant function.
■

Problem 2

(a)
proof:
Using the method of characteristics we have

Let u be harmonic on Rn and satisfies the following: There exists a constant C > 0 such that:

∫
{y∈Rn:|y−x|<1}

|u(y)|dy ≤ C

for each x ∈ R
n. Prove that u is constant

Mean Value Formula

Evans p.25:
If u ∈ C 2(U) is harmonic, then

u(x) = ⨍∂B(x,r) u(y)dS(y) = ⨍B(x,r) u dy

for each ball B(x, r) ⊂ U

#PDE

Liouville's Theorem

Statement:
A function which is analytic and bounded in the whole plane must reduce to a constant.

#Complex_Analysis

Consider the following Cauchy Problem:

(a) Use the method of characteristics to find an explicit formula for u
(b) Show that the solution becomes infinite along the hyperbola x2 − y2 = 4

ux + uy = u2 in {(x, y) ∈ R
2 : y > −x,x > 0}

u(x, −x) = x, x > 0
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dx

ds
= 1,

dt

ds
= 1,

dz

ds
= z2

Thus

Therefore x − y = 2r ⟹ r(x, y) = 1
2 (x − y) and s(x, y) = y. Solving for z we have

−
1

z
= s + c3(r) ⟹ z(r, s) =

−1

c3(r) + s

Using initial data we have

Now we may plug in our values of r(x, y) and s(x, y) to obtain

(b)
Show that the solution becomes infinite along the hyperbola x2 − y2 = 4

proof:
Along the characteristic

z(r, s) =
1

1−r2

r
− s

the solution will blow up when 1−r2

r = s and thus when 1 − r2 = rs. Now plugging in x and y we have

Thus, the solution becomes infinite along the hyperbola x2 − y2 = 4.
■

Problem 3

x = s + c1(r), y = s + c2(r)

⟹ x(r, −r) = −r + c1(r) = r, y(r, −r) = −r + c1(r) = −r

⟹ x(r, s) = s + 2r, y(r, s) = s

z(r, −r) =
−1

c3(r) + (−r)
= r

⟹ c3(r) =
r2 − 1

r

⟹ z(r, s) =
−1

r2−1
r + s

=
−r

r2 − 1 + rs

z(r, s) = z(r(x, y), s(x, y)) = u(x, y) =
− 1

2 (x − y)

( (x−y)
2 )

2
− 1 +

x−y

2 y

=
−(x − y)

x2

2 + y2

2 − xy + xy − y2 − 2

=
−(x − y)

1
2 (x2 − y2) − 2

=
2(x − y)

4 − (x2 − y2)

1 −
(x − y)2

4
=

(x − y)y

2
⟹ 4 − (x2 − 2xy + y2) = 2xy − 2y2

⟹ 4 = x2 − y2

Fall 2025 Solutions

2 / 7

af://h2-4
af://h1-5


(a)
proof:
Take

d

dt
∫

T𝟛
θ dx = ∫

T𝟛

d

dt
θ dx = ∫

T𝟛
θt dx = ∫

T𝟛
Δθ − v ⋅ ∇θ dx

By

we have

∫
T𝟛

Δθ dx = ∫
∂T𝟛

∂θ

∂ν
 dS = 0

since the torus has no boundary. Thus

d

dt
∫

T𝟛
θ dx = −∫

T𝟛
v ⋅ ∇θ dx

Note that

Therefore, since v is divergence free, we have that v ⋅ ∇θ = div(θv) = ∇ ⋅ (θv). As a result

Let T3 = R
3/Z

3 be the periodic box with |T3| = 1 and let v = v(x) be a given divergence-free (i.e. ∇ ⋅ v = 0) periodic, smooth
vector field. Assume that θ(t,x) is a periodic, smooth function solving

(a). Show that

d

dt
∫

T𝟛
θdx = 0

(b). Denote the average 1
T𝟛 ∫

T3 θ dx by θ̄. Prove that there exists a constant c > 0 such that

∥θ(t, ⋅) − θ̄∥L2 ≤ e−ct∥θ0(⋅) − θ̄∥L2  for all t > 0

Hint: Compute d
dt ∫T3 |θ(t,x) − ¯(θ)|2 dx.

θt + v ⋅ ∇θ = Δθ, x ∈ T
3,  t > 0

θ(0,x) = θ0(x)

Green's Formulas

Let u, v ∈ C 2(Ū)

(i)

∫
U

Δu dx = ∫
∂U

∂u

∂ν
dS

(ii)

∫
U

∇v ⋅ ∇u dx = −∫
U

uΔv dx + ∫
∂U

u
∂v

∂ν
dS

(iii)

∫
U

uΔv − vΔu dx = ∫
∂U

u
∂v

∂ν
− v

∂u

∂ν
dS

#PDE

div(θv) = ∇ ⋅ (θv) =
n

∑
i=1

∂i(θv
i) =

n

∑
i=1

((vi∂iθ) + (θ∂iv
i)) = (v ⋅ ∇θ) + (θ(∇ ⋅ v))

= v ⋅ ∇θ + θdiv(v)

Fall 2025 Solutions

3 / 7

af://h2-6


d

dt
∫

T𝟛
θ dx = −∫

T𝟛
v ⋅ ∇θ dx = −∫

T𝟛
div(θv)

Then by

we have

d

dt
∫

T𝟛
θ dx = −∫

T3

div(θv) dx = −∫
∂T3

θv ⋅ ν dS = 0

since the torus has no boundary.
■

(b)
proof:
Note that θ̄ is purely a function of time. Set

ϕ(t,x) := θ(t,x) − θ̄

From part (a), θ̄ is constant in time, so

ϕt = θt = Δθ − v ⋅ ∇θ

Then since θ̄ is constant in space,

As a result ϕt = Δ(ϕ) − v∇(ϕ). Now we may evaluate

d

dt
∥ϕ(t)∥2

L2 =
d

dt
∫

T3

|ϕ(t,x)|2dx

as we would in an energy method

From

Gauss-Green

Evans p.711

(i) Suppose u ∈ C 1(U). Then

∫
U

uxi
 dx = ∫

∂U
uν i dS (i = 1, … ,n).

(ii) - also called the divergence theorem

∫
U

div u dx = ∫
∂U

u ⋅ ν dS

for each vector field u ∈ C 1(U ; R
n).

#PDE

–

–

Δ(ϕ) − v ⋅ ∇ϕ = Δ(θ − θ̄) − v ⋅ ∇(θ − θ̄)

= Δ(θ) − Δ(θ̄) − v ⋅ ∇(θ) − v ⋅ ∇(θ̄)

= Δ(θ) − v ⋅ ∇(θ)

(
1

2
)

d

dt
∫

T3

|ϕ(t,x)|2 dx = ∫
T3

ϕϕt dx

= ∫
T3

ϕ(Δϕ − v ⋅ ∇ϕ) dx

= ∫
T3

ϕΔϕ dx − ∫
T3

ϕ(v ⋅ ∇ϕ) dx

= −∫
T3

∇|ϕ|2 − ∫
T3

ϕ(v ⋅ ∇ϕ )dx

Green's Formulas

Let u, v ∈ C 2(Ū)

(i)
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and the torus having no boundary.

On the right side of the difference we have ϕ(v ⋅ ∇ϕ) = (ϕv) ⋅ ∇ϕ. As we have proven in part (a)
v ⋅ ∇(ϕ) = ∇(ϕv) − ϕdiv(v) = ∇(ϕv). Thus

Then

since the torus has no boundary. As a result

d

dt
∥ϕ(t)∥2

L2 = −2∫
T3

|∇ϕ|2 = −2∥∇ϕ(t)∥2
L2 ≤ −c∥ϕ(t)∥2

L2

with the last inequality following from the

. As a result we have

d

dt
∥ϕ(t)∥2

L2 ≤ −c∥ϕ(t)∥2
L2

so by

∫
U

Δu dx = ∫
∂U

∂u

∂ν
dS

(ii)

∫
U

∇v ⋅ ∇u dx = −∫
U

uΔv dx + ∫
∂U

u
∂v

∂ν
dS

(iii)

∫
U

uΔv − vΔu dx = ∫
∂U

u
∂v

∂ν
− v

∂u

∂ν
dS

#PDE

(ϕv) ⋅ ∇ϕ = ∇(ϕ2v) − ϕ∇(vϕ)

= ∇(ϕ2v) − ϕ(v ⋅ ∇ϕ) + ϕ2(div(v))

= ∇(ϕ2v) − ((ϕv) ⋅ ∇ϕ)

⇒ (ϕv) ⋅ ∇ϕ =
1

2
∇(ϕ2v)

∫
T3

ϕ(v ⋅ ∇ϕ) =

( 1

2
)∫

T3

∇ ⋅ (ϕ2v) dx =
1

2
∫

T3

div(ϕ2v) = ∫
∂T3

ϕ2v ⋅ νdS = 0

Poincare Inequality

Evans p.290

(i)
Let U be a bounded, connected, open subset of Rn with a C 1 boundary ∂U . Assume 1 ≤ p ≤ ∞. Then there exists a constant C
depending only on n, p and U such that

∥u − ⨍U u dy∥Lp(U) ≤ C∥Du∥Lp(U)

(ii)
This is also sometimes called Poincare's Inequality

Assume U is a bounded, open subset of Rn. Suppose u ∈ W
1,p
0 (U) for some 1 ≤ p < n. Then we have the estimate

∥u∥Lq(U) ≤ C∥Du∥Lp(U)

for each constant q ∈ [1, p∗], (where p∗ = np
n−p ) the constant C depending only on p, q,n and U .

In particular, for all 1 ≤ p ≤ ∞

∥u∥Lp(U) ≤ C∥Du∥LP (U)

#PDE

Gronwall's Inequality
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Simplified Versions From Evans
Evans p. 708

Differential Form

(i) Let η(⋅) be a nonnegative, absolutely continuous function on [0,T ] which satisfies a.e. t the differential inequality

η′(t) ≤ ϕ(t)η(t) + ψ(t)

where ϕ(t) and ψ(t) are nonnegative, summable functions (integrable) on [0,T ]. Then

η(t) ≤ e∫
t

0 ϕ(s)ds [η(0) + ∫
t

0
ψ(s) ds]

for all 0 ≤ t ≤ T .

(ii) In particular, if

η′ ≤ ϕη  on [0,T]   and   η(0) = 0,

then

η ≡ 0  on  [0,T ]

Integral Form

(i) Let ξ(t) be a nonnegative, summable function on [0,T ] which satisfies for a.e. t the integral inequality

ξ(t) ≤ C1 ∫
t

0
ξ(s) ds + C2

for constants C1,C2 ≥ 0. Then

ξ(t) ≤ C2(1 + C1te
C1t)

for a.e. 0 ≤ t ≤ T

(ii) In particular, if

ξ(t) ≤ C1 ∫
t

0

ξ(s) ds

for a.e. 0 ≤ t ≤ T , then

ξ(t) = 0  a.e

Sign Agnostic Version
Differential Form:
Let I denote an interval of the real line of the form [a, b), [a, b],  or [a, ∞) and let β,u be real-valued continuous functions defined
on I. If u is differentiable in the interior I o of I and satisfies

u′(t) ≤ β(t)u(t) for t ∈ I o

then u is bounded by the solution of the corresponding differential equation v′(t) = β(t)v(t):

u(t) ≤ u(a)e∫
t

a
β(s)ds

for all t ∈ I.

Remark: There are no assumptions on the signs of the functions βand u.

proof:
Let u′(t) ≤ β(t)u(t). Now define
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∥ϕ(t)∥2
L2 ≤ ∥ϕ(0)∥2

L2e
∫ t

0 −c ds = ∥θ0 − θ̄∥2
L2e

−ct

Thus

∥θ − θ̄∥L2 ≤ e−ct∥θ0 − θ̄∥L2

■

v(t) = e∫
t

0 β(s) ds ⇒ v′(t) = β(t)v(t)

Then by the quotient rule

d

dt

u

v
=

v(t)(u′(t) − β(t)u(t))

v2(t)
≤ 0

Therefore

u(t)

v(t)
≤

u(0)

v(0)
⇒ u(t) ≤ u(0)e∫

t

a
β(s) ds

■

#PDE
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