Fall 2024 Solutions
Problem 1

Consider a linear transport equation (a > 0) with drag (b > 0):
Uy + auy +bu =0

(a) Find the solution u(¢,z) to Eq. (1) for (¢,z) € R, x R with the initial condition u(0,z) = f(z)
(b) Find the solution u(t, z) to Eq. (1) for (¢,z) € R4 x Ry subject to the initial condition u(0,z) = f(z) and the boundary
condition u(t,0) = g(¢), where f(0) = g(0).

(a)

proof:

F(xatvzvpvq) = Q+ap+bz =0
Thus our characteristics ODEs are:

awiFi ot 7 0z

With initial conditions:

Then:
z(s,r) =as+r, ts,r)=s, 2(rs)=f(r)e’
Thus:
rite) =z —at, s(tz)=t, u(t,z)=2(r(tz),s(t ) =2z — at,t) = f(z — at)e

So as a result:
u(t,z) = f(z — at)e ® W

(b)

proof:
Find the solution u(t,z) to Eq. (1) for (¢,z) € Ry x Ry subject to the initial condition u(0,z) = f(z) and the boundary condition

u(t,0) = g(t), where f(0) = g(0).
Solution:

The linear transport equation u: + au, + bu = 0 propagates information along characteristic curves defined by

dz
dt
These are straight lines in the (¢, z) plane with slope a

rT=at+r

Where r is a constant that determines where it originates:



1) If » > 0, then the characteristic starts from t =0 (i.e. z =r at t = 0)

2) If r < 0 then the characteristic starts from z < 0, but since we are restricted to x > 0, it instead starts from the boundary

condition at £ =0 (ie. z =0,t = —Z = 7)
So for 1. we have already solved, and for 2. we have
t(r,0) =7 =x(,0)=0 2(0,7) = g(7)

Thus t(s,7) = s + ca(7) = t(s,0) = 7 and thus t = s + 7. Then z(s,7) = as + ¢1(7) = z(s,0) = as. Lastly, z(s,7) = g(r)e 2 As a
result

and we have

Thus our final result is:

[ f(z—at)e™, z>at
ult,z) = {g (t—%)e ™, z<at
|

a

Problem 2

Let © C R” with n > 1 be a bounded domain with smooth boundary. Assume u € C?(Q) solves

Au=u"+2u® +3uin Q
u = 0 on 02

Show that u is identically 0

proof:

Method 1: Green's First Identity

By

Green's Formulas

Let u,v € C*(0)
(i)

/Auda::/ %ds
U ou Ov

/V'thud:cz—/uA'udm—f—/ ua—UdS
U U ou Ov
(i)
/ ulAv — vAu dz:/ u@—v%ds
U U 81/ 61/

#PDE




we have that for u,v € C2(0)

/Vv-Vudz:—/uAvdw—O—/ u%ds
U v v Ov

Thus, setting v = u we have

/|Vu\2dm:f/uAudm+/ u%ds
U U v Ov

Note that since © = 0 on 99 then

ou
—dS =0
/aUu 81/

Furthermore
Au=u" + 2u® + 3u = uAu = u® + 2u5 + 3u?
we have
/uAudz:/ u® + 208 + 3u? dz
U U
Thus

/\Vu|2dx:—/u8+2u6+3u2dm
U U

The left hand side must be positive, and the right hand side (as the sum of even powers of real numbers multiplied by a negative)

must be negative. The only way this is possible is if
/ |Vu|? dz = —/u8+2u6+3u2d:c:0
U U

Therefore |Vu|? = u® + 2ub + 3u? = 0 a.e. which implies that u = 0 a.e.

Since w is continuous and equal to 0 a.e., then by continuity u = 0 everywhere in 2 H

Method 2: Elliptic PDE Max Principle

Since A is already a uniformly elliptic operator and €2 is a domain, we can apply the strong maximum principle directly. Call A = L

here for our uniformly elliptic operator. We have two cases where u could potentially be non-zero on §2, since u < 0 = Lu < 0 and
u>0=Lu>0

Case 1 (u < 0)

Assume u < 0 somewhere on Q, then Lu = u” + 2u® + 43 < 0, and w then attains its minimum over ) at an interior point (v = 0 on
the boundary), then by the strong maximum principle u is constant within Q, by the continuity of u this is a contradiction. Thus

u = 0.

Case 2 (u > 0)

Assume u > 0 somewhere on €, then Lu = u” + 2u® +u® > 0 and u then attains its maximum over { at an interior point (since

u = 0), then by the strong maximum principle v is constant within Q. By the continuity of «, this is a contradiction. Thus u = 0.

Problem 3



Let © ¢ R” with n > 1 be a bounded domain with smooth boundary. Let u € C2([0,00) x Q) which solves the equation
Uy — Au =u
with the boundary condition v = 0 on 2. Let

1
B(t) = 5 /Q W (t,) + |Vault,z) Pde

Prove that there exists C' > 0 independent of ¢ such that

E(t) < exp(Ct)E(0) fort>0

proof:

Note that E(t) is the "energy" of the wave equation.
Thus

d
2 By = / wilus — Aw) da
i o

Then, since uy — Au = u we have that

d
EE(t):Autu dz

Then we use

Holder's Inequality

Let 1 < p,q < oo such that % + % =1, then if f € LP(U) and g € LY(U)

/U \fol dz < Il - gl o)

to say

d
ZEE(t) = ‘/utu da:‘ < / [ugu| dz < Jlugll z2q) - lull 220
Q Q

Observe that

\ \ 1/2\ 2
ol 2oy = (/ﬂ |ut|)

= / |ut|2 < / |ut|2 + |Vul(t, :c)\2 dz = 2E(t)
Q Q
Thus

lluell 2y < 4/ 2E(t)

Then we have from the

Poincare Inequality
Evans p.290
(i)
Let U be a bounded, connected, open subset of R” with a, C! boundary U. Assume 1 < p < co. Then there exists a constant C
depending only on n,p and U such that

u— fyu dyll o) < Cl|Dull ooy




(i)

This is also sometimes called Poincare's Inequality

Assume U is a bounded, open subset of R". Suppose u € Wol’p(U) for some 1 < p < n. Then we have the estimate
lull sy < CllDul| oo

for each constant g € [1,p*], (where p* = %) the constant C' depending only on p,q,n and U.

In particular, for all 1 <p < oo

lullzowy < CllDull ey
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that there exists some C' (not dependent on t) such that
[ullz2@@) < ClVullL2(e)
Once again comparing this to E(t) we have
Il < C21ulley = C° [ 1Vul? do < [ uf +|V,u(t, ) do

= 2E(t) = 2C?E(t)
As a result

Jullzxe) < Cy/2B()
Putting this all together we have

d
B < uil @y - [ull oy < \/2B(2) - O/ 2B(t) = 20E(t)

Let C' = 2C Lastly, we utilize the derivative version of

Gronwall's Inequality

Simplified Versions From Evans

Evans p. 708

Differential Form

(i) Let n(-) be a nonnegative, absolutely continuous function on [0, T] which satisfies a.e. ¢ the differential inequality

' (t) < o()n(t) + $(t)

where ¢(t) and 9(¢) are nonnegative, summable functions (integrable) on [0,7]. Then

(0 < 90 [50)+ ["o(e) s

forall 0 <t<T.
(ii) In particular, if

7' < ¢n on[0,T] and n(0) =0,
then

n=0 on [0,T)

Integral Form




(i) Let £(t) be a nonnegative, summable function on [0, T] which satisfies for a.e. ¢ the integral inequality

£t) < Ch /Otg(s) ds + Cy

for constants Cy,Cy > 0. Then
£(t) < Cy(1+ Cyte™)
for a.e. 0 <t<T

(ii) In particular, if

¢t) < Gy /0 "¢(s) ds

for a.e. 0 <t < T, then

£t)=0 ae

Sign Agnostic Version

Differential Form:
Let I denote an interval of the real line of the form [a,b), [a,b], or [a,00) and let B, u be real-valued continuous functions defined on I

. If u is differentiable in the interior I° of I and satisfies
u'(t) < B(t)u(t) for t € I°
then u is bounded by the solution of the corresponding differential equation v'(t) = B(¢)v(¢):
u(t) < u(a)efﬂtﬁ(s)ds
for all ¢t € I.
Remark: There are no assumptions on the signs of the functions fand wu.

proof:
Let u'(t) < B(t)u(t). Now define

o(t) = el P4 = o/ (£) = B(t)o(t)

Then by the quotient rule

— <
dt v v2(t) =0
Therefore
u(t) U(O) [ B(s) ds
< < a
@ = W00) = u(t) <u(0)e
||
#PDE

to state that since

Then

for all t > 0. We have proven the result B



