
Fall 2024 Solutions

Problem 1

(a)
proof:

F(x, t, z, p, q) = q + ap + bz = 0

Thus our characteristics ODEs are:

∂x

∂s
= Fp = a,

∂t

∂s
= Fq = b,

∂z

∂s
= pFp + qFq = −bz

With initial conditions:

x(0, r) = r, t(0, r), z(0, r) = f(r)

Then:

x(s, r) = as + r, t(s, r) = s, z(r, s) = f(r)e−bs

Thus:

r(t,x) = x − at, s(t,x) = t, u(t,x) = z(r(t,x), s(t,x)) = z(x − at, t) = f(x − at)e−bt

So as a result:
u(t,x) = f(x − at)e−bt ■

(b)
proof:
Find the solution u(t,x) to Eq. (1) for (t,x) ∈ R+ × R+ subject to the initial condition u(0,x) = f(x) and the boundary condition
u(t, 0) = g(t), where f(0) = g(0).

Solution:

The linear transport equation ut + aux + bu = 0 propagates information along characteristic curves defined by

dx

dt
= a

These are straight lines in the (t,x) plane with slope a

x = at + r

Where r is a constant that determines where it originates:

Consider a linear transport equation (a > 0) with drag (b > 0):

ut + aux + bu = 0

(a) Find the solution u(t,x) to Eq. (1) for (t,x) ∈ R+ × R with the initial condition u(0,x) = f(x)

(b) Find the solution u(t,x) to Eq. (1) for (t,x) ∈ R+ × R+ subject to the initial condition u(0,x) = f(x) and the boundary
condition u(t, 0) = g(t), where f(0) = g(0).



So for 1. we have already solved, and for 2. we have

t(τ, 0) = τ x(τ, 0) = 0 z(0, τ) = g(τ)

Thus t(s, τ) = s + c2(τ) ⇒ t(s, 0) = τ and thus t = s + τ. Then x(s, τ) = as + c1(τ) ⇒ x(s, 0) = as. Lastly, z(s, τ) = g(τ)e−2s As a
result

s =
x

a
, τ = t −

x

a

and we have

z(s(x, t), τ(x, t)) = z(
x

a
, t −

x

a
) = g(t −

x

a
)e−bt

Thus our final result is:

u(t,x) = {

■

Problem 2

proof:

Method 1: Green's First Identity
By

1) If r ≥ 0, then the characteristic starts from t = 0 (i.e. x = r at t = 0)

2) If r < 0 then the characteristic starts from x < 0, but since we are restricted to x ≥ 0, it instead starts from the boundary
condition at x = 0 (i.e. x = 0, t = − r

a
= τ)

f(x − at)e−bt, x ≥ at

g (t − x
a
)e−bt, x < at

Let Ω ⊂ R
n with n > 1 be a bounded domain with smooth boundary. Assume u ∈ C 2(Ω̄) solves

Show that u is identically 0

Δu = u7 + 2u5 + 3u in Ω

u = 0 on ∂Ω

Green's Formulas

Let u, v ∈ C 2(Ū)

(i)

∫
U

Δu dx = ∫
∂U

∂u

∂ν
dS

(ii)

∫
U

∇v ⋅ ∇u dx = −∫
U

uΔv dx + ∫
∂U

u
∂v

∂ν
dS

(iii)

∫
U

uΔv − vΔu dx = ∫
∂U

u
∂v

∂ν
− v

∂u

∂ν
dS

#PDE



we have that for u, v ∈ C 2(Ū)

∫
U

∇v ⋅ ∇u dx = −∫
U

uΔv dx + ∫
∂U

u
∂u

∂ν
dS

Thus, setting v = u we have

Note that since u ≡ 0 on ∂Ω then

∫
∂U

u
∂u

∂ν
dS = 0

Furthermore

Δu = u7 + 2u5 + 3u ⇒ uΔu = u8 + 2u6 + 3u2

we have

∫
U

uΔu dx = ∫
U

u8 + 2u6 + 3u2 dx

Thus

The left hand side must be positive, and the right hand side (as the sum of even powers of real numbers multiplied by a negative)
must be negative. The only way this is possible is if

= 0

Therefore |∇u|2 = u8 + 2u6 + 3u2 = 0 a.e. which implies that u = 0 a.e.

Since u is continuous and equal to 0 a.e., then by continuity u ≡ 0 everywhere in Ω ■

Method 2: Elliptic PDE Max Principle
Since Δ is already a uniformly elliptic operator and Ω is a domain, we can apply the strong maximum principle directly. Call Δ = L

here for our uniformly elliptic operator. We have two cases where u could potentially be non-zero on Ω, since u < 0 ⇒ Lu < 0 and
u > 0 ⇒ Lu > 0

Case 1 (u < 0)

Assume u < 0 somewhere on Ω, then Lu = u7 + 2u5 + u3 < 0, and u then attains its minimum over Ω̄ at an interior point (u = 0 on
the boundary), then by the strong maximum principle u is constant within Ω, by the continuity of u this is a contradiction. Thus
u ≡ 0.

Case 2 (u > 0)

Assume u > 0 somewhere on Ω, then Lu = u7 + 2u5 + u3 > 0 and u then attains its maximum over Ω̄ at an interior point (since
u = 0), then by the strong maximum principle u is constant within Ω. By the continuity of u, this is a contradiction. Thus u ≡ 0.

Problem 3

∫
U

|∇u|2 dx = −∫
U

uΔu dx + ∫
∂U

u
∂u

∂ν
dS

∫
U

|∇u|2 dx = −∫
U

u8 + 2u6 + 3u2 dx

∫
U

|∇u|2 dx = −∫
U

u8 + 2u6 + 3u2 dx



proof:
Note that E(t) is the "energy" of the wave equation.

Thus

d

dt
E(t) = ∫

Ω
ut(utt − Δu) dx

Then, since utt − Δu = u we have that

d

dt
E(t) = ∫

Ω
utu dx

Then we use

to say

2
d

dt
E(t) = ∫

Ω
utu dx ≤ ∫

Ω
|utu| dx ≤ ∥ut∥L2(Ω) ⋅ ∥u∥L2(Ω)

Observe that

Thus

∥ut∥L2(Ω) ≤ √2E(t)

Then we have from the

Let Ω ⊂ R
n with n > 1 be a bounded domain with smooth boundary. Let u ∈ C 2([0, ∞) × Ω̄) which solves the equation

utt − Δu = u

with the boundary condition u = 0 on ∂Ω. Let

E(t) =
1

2
∫

Ω
u2
t (t,x) + |∇xu(t,x)|2dx

Prove that there exists C > 0 independent of t such that

E(t) ≤ exp(Ct)E(0)  for t ≥ 0

Holder's Inequality

Let 1 ≤ p, q ≤ ∞ such that 1
p

+ 1
q

= 1, then if f ∈ Lp(U) and g ∈ Lq(U)

∫
U

|fg| dx ≤ ∥f∥Lp(U) ⋅ ∥g∥Lq(U)∣ ∣∥ut∥
2
L2(Ω) = ((∫

Ω
|ut|

2)
1/2

)
2

= ∫
Ω

|ut|
2 ≤ ∫

Ω
|ut|

2 + |∇xu(t,x)|2 dx = 2E(t)

Poincare Inequality

Evans p.290

(i)
Let U be a bounded, connected, open subset of Rn with a C 1 boundary ∂U . Assume 1 ≤ p ≤ ∞. Then there exists a constant C
depending only on n, p and U such that

∥u − ⨍U u dy∥Lp(U) ≤ C∥Du∥Lp(U)



that there exists some C (not dependent on t) such that

∥u∥L2(Ω) ≤ C∥∇u∥L2(Ω)

Once again comparing this to E(t) we have

As a result

∥u∥L2(Ω) ≤ C√2E(t)

Putting this all together we have

d

dt
E(t) ≤ ∥ut∥L2(Ω) ⋅ ∥u∥L2(Ω) ≤ √2E(t) ⋅ C√2E(t) = 2CE(t)

Let C ′ = 2C Lastly, we utilize the derivative version of

(ii)
This is also sometimes called Poincare's Inequality

Assume U is a bounded, open subset of Rn. Suppose u ∈ W
1,p
0 (U) for some 1 ≤ p < n. Then we have the estimate

∥u∥Lq(U) ≤ C∥Du∥Lp(U)

for each constant q ∈ [1, p∗], (where p∗ =
np

n−p ) the constant C depending only on p, q,n and U .

In particular, for all 1 ≤ p ≤ ∞

∥u∥Lp(U) ≤ C∥Du∥LP (U)

#PDE

∥u∥2
L2(Ω) ≤ C 2∥∇u∥2

L2(Ω) = C 2 ∫
Ω

|∇u|2 dx ≤ ∫
Ω

|ut|
2 + |∇xu(t,x)|2 dx

= 2E(t) = 2C 2E(t)

Gronwall's Inequality

Simplified Versions From Evans
Evans p. 708

Differential Form

(i) Let η(⋅) be a nonnegative, absolutely continuous function on [0,T ] which satisfies a.e. t the differential inequality

η′(t) ≤ ϕ(t)η(t) + ψ(t)

where ϕ(t) and ψ(t) are nonnegative, summable functions (integrable) on [0,T ]. Then

η(t) ≤ e∫ t

0 ϕ(s)ds [η(0) + ∫
t

0

ψ(s) ds]

for all 0 ≤ t ≤ T .

(ii) In particular, if

η′ ≤ ϕη  on [0,T]   and   η(0) = 0,

then

η ≡ 0  on  [0,T ]

Integral Form



to state that since

dE

dt
≤ C ′E(t) + 0

Then

E(t) ≤ e∫ t

0 C
′ ds[E(0) + 0] = eC

′tE(0)

for all t ≥ 0. We have proven the result ■

(i) Let ξ(t) be a nonnegative, summable function on [0,T ] which satisfies for a.e. t the integral inequality

ξ(t) ≤ C1 ∫
t

0
ξ(s) ds + C2

for constants C1,C2 ≥ 0. Then

ξ(t) ≤ C2(1 + C1te
C1t)

for a.e. 0 ≤ t ≤ T

(ii) In particular, if

ξ(t) ≤ C1 ∫
t

0
ξ(s) ds

for a.e. 0 ≤ t ≤ T , then

ξ(t) = 0  a.e

Sign Agnostic Version
Differential Form:
Let I denote an interval of the real line of the form [a, b), [a, b],  or [a, ∞) and let β,u be real-valued continuous functions defined on I
. If u is differentiable in the interior I o of I and satisfies

u′(t) ≤ β(t)u(t) for t ∈ I o

then u is bounded by the solution of the corresponding differential equation v′(t) = β(t)v(t):

u(t) ≤ u(a)e∫ t

a
β(s)ds

for all t ∈ I.

Remark: There are no assumptions on the signs of the functions βand u.

proof:
Let u′(t) ≤ β(t)u(t). Now define

v(t) = e∫ t

0 β(s) ds ⇒ v′(t) = β(t)v(t)

Then by the quotient rule

d

dt

u

v
=

v(t)(u′(t) − β(t)u(t))

v2(t)
≤ 0

Therefore

u(t)

v(t)
≤

u(0)

v(0)
⇒ u(t) ≤ u(0)e∫ t

a
β(s) ds

■

#PDE


