GEOMETRY TOPOLOGY QUALIFYING EXAM (MATH 535A AND MATH 540)

SPRING 1993

- **Problem 1** Let $f : \mathbb{R}^2 \to \mathbb{R}^2$ be differentiable. Compute $f^*(dx_1 \wedge dx_2)$.
- **Problem 2** Let $f: M \to N$ be a differentiable map between two manifolds, such that f is bijective and such that its tangent map $T_x f: T_x M \to T_{f(x)} N$ is an isomorphism for every $x \in M$. Show that f is a diffeomorphism.
- **Problem 3** Let $B^2 = \{x \in \mathbb{R}^2; ||x|| \le 1\}$ be the unit disk in the plane. Let $f: B^2 \to B^2$ be a continuous map such that f(x) = x for every $x \in S^1 = \{x \in \mathbb{R}^2; ||x|| = 1\}$. Show that f is surjective.
- **Problem 4** Let M be a compact surface in \mathbb{R}^3 , namely a compact 2-dimensional submanifold of \mathbb{R}^3 . Show that there is a point $x \in M$ s uch that M lies entirely on one side of the tangent plane T_xM .
- **Problem 5** Is there a covering map \mathbb{R}^2 -{2 points} $\rightarrow \mathbb{R}^2$ -{1 point}? (Possible hint: π_1 and H_1).
- **Problem 6** Let U be an open subset of \mathbb{R}^n . Show that U is homeomorphic to no open subset of \mathbb{R}^p with p < n. (Possible hint: consider the homology of a pair $(U, U \{x\})$).
- **Problem 7** Recall that the tangent bundle TM of a manifold M consists of all pairs (x, \vec{v}) where $x \in M$ and \vec{v} is the tangent space T_xM of M at x. Show that TM is an oriented manifold (even when M is not orientable!).