Topology qualifying exam **Spring** 2025

1. Let X be the quotient S^2/\sim by the relation

$$(x, y, z) \sim (x', y', z')$$
 if and only if $z = z' = 0$ and $(x, y) = \pm (x', y')$

In other words, X is acquired by S^2 by quotienting the equator $S^1 \subset S^2$ by the map $v \to -v$.

- (a) Describe a cell decomposition of X. That is, describe the cells and the attaching maps.
- (b) Give the corresponding cellular homology complex (with \mathbb{Z} -coefficients) for the cell decomposition in (a).
- (c) Compute the homology of the cellular complex from (b).
- 2. Consider the space $Y = \mathbb{RP}^3 \vee (S^2 \times S^1)$.
 - (a) Compute the homology groups (with \mathbb{Z} coefficients) of Y.
 - (b) Is Y homotopy equivalent to a compact orientable manifold? Prove or disprove.
 - (c) Compute the fundamental group $\pi_1(Y)$
 - (d) Compute the Euler characteristic $\chi(Y)$.
- 3. (a) Let ΣX denote the suspension of a connected topological space X.¹ Using the Mayer–Vietoris sequence, compute the integral homology groups of ΣX in terms of those of X.
 - (b) Prove that there is an isomorphism $\pi_7(S^3) \cong \pi_7(S^2)$.
- 4. (a) Let X_n be the complement of n distinct lines through the origin in \mathbb{R}^3 . Compute $\pi_1(X_n)$.

¹Recall that the suspension of a topological space X is given by $\Sigma X := (X \times I) / \sim$, where we put $(x,0) \sim (y,0)$ and $(x,1) \sim (y,1)$ for all $x,y \in X$.

- (b) Give a pair of path-connected topological spaces X and Y such that $H_1(X)$ and $H_1(Y)$ are isomorphic, but $\pi_1(X)$ and $\pi_1(Y)$ are not.
- (c) Compute the fundamental group of a genus g surfaces with n points removed for g, n > 0.
- (d) Let X be a path-connected space such that $\pi_1(X) \cong \mathbb{Z}/7\mathbb{Z}$. Determine the set of integers n such that there exists a 9-sheeted covering space $p: \widetilde{X} \to X$ with n connected components.