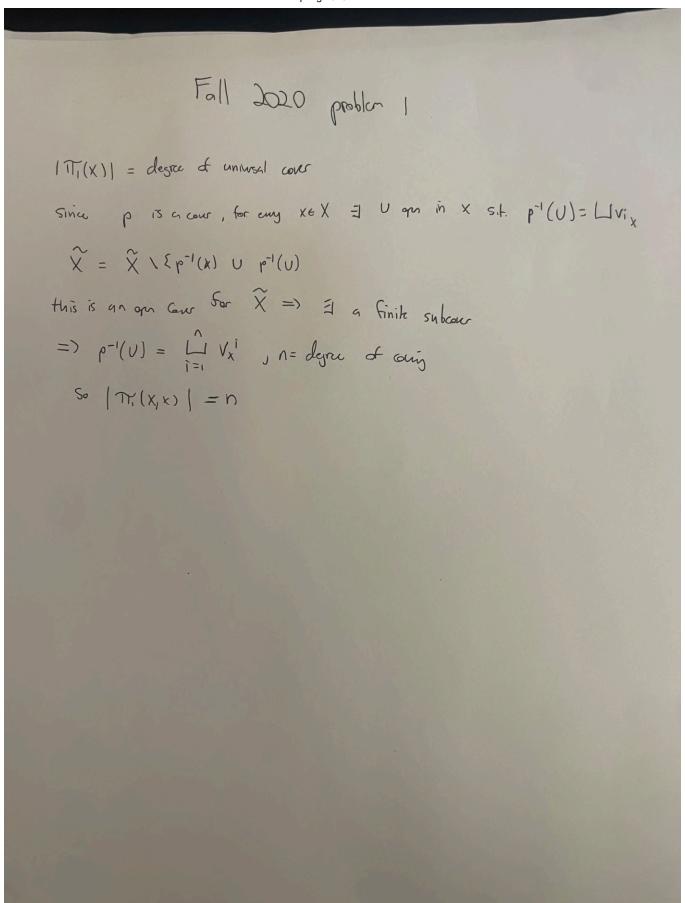
Spring 2023 Solutions

Problem 1

Let X be a Hausdorff topological space and let $\pi: \tilde{X} \to X$ be its universal cover, i.e. \tilde{X} is path connected and simply connected and π is a covering map. Prove that if \tilde{X} is compact then the fundamental group of X is finite.

<u>proof:</u>



Problem 4

Let T^2 denote the standard 2-torus and S^2 the standard 2-sphere. Let X be the space obtained by identifying 2 distinct points a_1, a_2 from T^2 to some point $p \in S^2$. Compute the integral homology groups of X and the fundamental group of X

proof:

 T^2 with 2 points identified is homotopic to $T^2 \vee S^1$ by

Torus with n points identified

 T^2 with n points identified is homotopic to the wedge sum of T^2 and n-1 circles.

#Algebraic Topology

. Because these points are also identified on the sphere we have

$$X = T^2 \vee S^1 \vee S^2$$

Ву

Reduced Homology of Wedge Sum

Hatcher Ch.2 Ex. 31

If the basepoints of X and Y that are identified in $X \vee Y$ are Deformation Retracts of neighborhoods $U \subset X$ and $V \subset Y$ then

$$\tilde{H}_n(X \vee Y) \cong \tilde{H}_n(X) \oplus \tilde{H}_n(Y)$$

Julian Take-home:

if (X, x) and (Y, y) are both good pairs, then

$$ilde{H}_n(Xee Y)\simeq ilde{H}_n(X)\oplus ilde{H}_n(Y)$$

Proof

Can be shown by mayer-vietoris

 $\#Algebraic_Topology$

we have

$$H_n(X)\cong egin{cases} \mathbb{Z} & n=0\ \mathbb{Z}\oplus\mathbb{Z} & n=2\ \mathbb{Z}\oplus\mathbb{Z}\oplus\mathbb{Z} & n=3\ 0 & ext{else} \end{cases}$$

The fundamental group can be calculated via

Seifert-Van Kampen

Rotman: Corollary 7.42

If K is a simplicial complex, having connected subcomplexes L_1 and L_2 such that $L_1 \cup L_2 = K$ and $L_1 \cap L_2$ is simply connected, then for $v_0 \in \text{Vert}(L_1 \cap L_2)$

$$\pi(K, v_0) \cong \pi(L_1, v_0) * \pi(L_2, v_0)$$

Hatcher: Theorem 1.20

If X is the union of path-connected open sets A_{α} each containing the basepoint $x_0 \in X$ and if each intersection $A_{\alpha} \cap A_{\beta}$ is path-connected, then the homomorphism $\Phi : *_{\alpha}\pi_1(A_{\alpha}) \to \pi_1(X)$ is surjective. If in addition each intersection $A_{\alpha} \cap A_{\beta} \cap A_{\gamma}$ is path-connected, then the kernel of Φ is the normal subgroup N generated by all elements of the form $i_{\alpha\beta}(\omega)i_{\beta\alpha}(\omega)^{-1}$ for $\omega \in \pi_1(A_{\alpha} \cap A_{\beta})$ and hence Φ induces an isomorphism $\pi_1(X) \cong *_{\alpha}\pi_1(A_{\alpha})/N$

Andrews University (simply connected intersection):

If $X = A \cup B$ where A, B open, path connected and $A \cap B$ is simply connected then

$$\pi_1(X)\cong\pi_1(A)*\pi_1(B)$$

Andrews University (general version):

If $X = A \cup B$ where A, B open, path connected and $A \cap B$ is path-connected then

$$\pi_1(X)\cong\pi_1(A)st_{\pi_1(A\cap B)}\pi_1(B)$$

 $\#Algebraic_Topology$

so we get

$$\pi_1(X) \cong \mathbb{Z} * \mathbb{Z}^2 * 0 \cong \mathbb{Z} * \mathbb{Z}^2$$

Problem 6

Let X be a topological space. Suppose for some k that we can cover X by k open sets U_1, \ldots, U_k so that each U_i is contractible as is each higher intersection of s open sets $U_i \cap \cdots \cap U_i$ for every s. Proved that the reduced homology $\tilde{H}_i(X) = 0$ for all $i \geq k-1$

Use induction on

Mayer-Vietoris

Julian Take-home Midterm:

If $U, V \subset X$ are subsets with $U^o \cup V^o = X$ then there is a long exact sequence

$$\cdots o H_n(U \cap V) \overset{(i_*,j_*)}{ o} H_n(U) \oplus H_n(V) \overset{k_*-l_*}{ o} H_n(X) \overset{\partial}{ o} H_{n-1}(U \cap V) o \ldots$$

 $\#Algebraic_Topology$