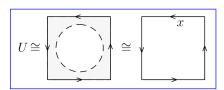
2016, Spring

Problem 1.

We write X as the union of the subspaces U and V shown below, with $U \cap V \cong S^1$.



Let $x \in \pi_1(U)$ and $y \in \pi_1(V)$ correspond to the edges above as labeled. Letting $i: U \cap V \hookrightarrow U$ and $j: U \cap V \hookrightarrow V$ be the canonical inclusions, then the induced homomorphism $i_*: \pi_1(U \cap V) \to \pi_1(U)$ maps the single generator $1 \in \pi_1(U \cap V) \cong \pi_1(\mathsf{S}^1) \cong \mathbb{Z}$ to $i_*(1) = x^4$, and $j_*: \pi_1(U \cap V) \to \pi_1(V)$ maps it to $j_*(1) = y^3$. So by van Kampen,

$$\pi_1(X) \cong \pi_1(U) *_{\pi_1(U \cap V)} \pi_1(V) \cong \frac{\langle x, y \rangle}{\langle x^4 y^{-3} \rangle} = \langle x, y \mid x^4 = y^3 = 1 \rangle.$$

Problem 2.

• Letting $Bij(p^{-1}(x_0))$ denote the set of bijections $p^{-1}(x_0) \to p^{-1}(x_0)$, we have an assignment

$$F: \pi_1(X, x_0) \to \mathsf{Bij}(p^{-1}(x_0)), \quad F_{[\gamma]}(\tilde{x}) := \tilde{\gamma}_{\tilde{x}}(1),$$

where $\tilde{\gamma}_{\tilde{x}}:[0,1]\to \tilde{X}$ is the unique lift of γ satisfying $\tilde{\gamma}_{\tilde{x}}(0)=\tilde{x}$. This assignment is precisely the monodromy action of $\pi_1(X,x_0)$ on $p^{-1}(x_0)$, and as such, for any $[\gamma]\in \pi_1(X,x_0)$, the order of $F_{[\gamma]}$ must divide $|\pi_1(X,x_0)|=|\mathbb{Z}_5|=5$.

• Take some connected component $\tilde{X}_1 \subset \tilde{X}$, and a point $\tilde{x} \in \tilde{X}_1$. There exists a path in X from $\pi(\tilde{x})$ to x_0 , and this path lifts to a path in \tilde{X}_1 from \tilde{x}_0 to an element of $p^{-1}(x_0)$. Since \tilde{X}_1 is connected, this means that this element of $p^{-1}(x_0)$ belongs to \tilde{X}_1 .

Next suppose a connected component $\tilde{X}_1 \subset \tilde{X}$ contains a distinct pair $\tilde{x}_0, \tilde{x}_1 \in p^{-1}(x_0)$. There exists a path $\tilde{\gamma}$ in \tilde{X}_1 from \tilde{x}_0 to \tilde{x}_1 . Then $\pi \circ \tilde{\gamma}$ is a loop in X based at x_0 , and $F_{[\pi \circ \tilde{\gamma}]}$ is nontrivial (it for instance sends \tilde{x}_0 to \tilde{x}_1).

Thus if $F_{[\gamma]}$ has order 1 for each $[\gamma] \in \pi_1(X, x_0)$ (i.e. if the action F is trivial), then no connected component of \tilde{X} contains more than one element of $p^{-1}(x_0)$. But we also showed that each connected component of \tilde{X} contains at least one such element, and we conclude that \tilde{X} has exactly one connected component for each element of $p^{-1}(x_0)$. So \tilde{X} has six connected components.

• Finally, if F is nontrivial, then there's some $[\gamma] \in \pi_1(X, x_0)$ such that $F_{[\gamma]}$ has order 5, and as such, there's some connected component \tilde{X}_1 of \tilde{X} containing at least 5 elements of $p^{-1}(x_0)$. The elements of $p^{-1}(x_0)$ contained in \tilde{X}_1 belong to a single orbit of the action F since \tilde{X}_1 is connected, and the order of any such orbit must divide $|\pi_1(X, x_0)| = 5$. Hence there are exactly 5 elements of $p^{-1}(x_0)$ contained in \tilde{X}_1 , and the last element belongs to some other connected component of \tilde{X} . So \tilde{X} has two connected components.

Problem 3.

By problem 5 of 2005, Fall, we have $H_i(S^n \times S^1) \cong H_i(S^n) \oplus H_{i-1}(S^n)$ for all $j \in \mathbb{Z}$. Thus

$$\mathsf{H}_{j}(\mathsf{S}^{1}\times\mathsf{S}^{1})\cong\left(\begin{cases}\mathbb{Z}&j=0,1,\\0&\text{else}\end{cases}\right)\oplus\left(\begin{cases}\mathbb{Z}&j=1,2,\\0&\text{else}\end{cases}\right)\cong\begin{cases}\mathbb{Z}&j=0,\\\mathbb{Z}^{\oplus2}&j=1,\\\mathbb{Z}&j=2,\\0&\text{else},\end{cases}$$

and for $n \geq 2$,

$$\mathsf{H}_{j}(\mathsf{S}^{n}\times\mathsf{S}^{1})\cong\left(\begin{cases}\mathbb{Z}&j=0,n,\\0&\text{else}\end{cases}\right)\oplus\left(\begin{cases}\mathbb{Z}&j=1,n+1,\\0&\text{else}\end{cases}\right)\cong\begin{cases}\mathbb{Z}&j=0,1,n,n+1,\\0&\text{else}.\end{cases}$$

Problem 4.

- (a) Since $\operatorname{im}(f)$ has nonempty interior, it has positive Lebesgue measure, so by Sard we may choose a regular value $y \in \operatorname{im}(f)$ of f. Now take some $x \in f^{-1}(y)$. Then $\operatorname{d} f_x : \mathsf{T}_x M \to \mathsf{T}_y \mathbb{R}^n$ is a surjective linear map of n-dimensional vector spaces, and thereby a linear isomorphism. So by the inverse function theorem, there exists an open neighborhood $U \subset M$ of x such that $f|_{U}: U \to f(U)$ is a diffeomorphism.
- (b) Since M is compact and f is continuous, $\mathsf{im}(f)$ is compact, and in particular not all of \mathbb{R}^n . So f isn't surjective, and $\mathsf{deg}(f) = 0$. Let $y \in \mathsf{im}(f)$ be as in part (a). Then

$$0=\deg(f)=\sum_{x\in f^{-1}(y)}\deg_x(f).$$

Recall that $f^{-1}(y) \neq \emptyset$, and each local degree $\deg_x(f) = \pm 1$. So to get zero on the left-hand side, there must be points $x_1, x_2 \in f^{-1}(y)$ so that $\deg_{x_1}(f) = 1$ and $\deg_{x_2}(f) = -1$. Then f is orientation-preserving at x_1 and orientation-reversing at x_2 .

Problem 5.

Since $\mathbb{R}\mathsf{P}^n$ is an *n*-manifold, then there exists a nowhere vanishing volume form $\omega \in \Omega^n(\mathbb{R}\mathsf{P}^n)$ if and only if $\mathbb{R}\mathsf{P}^n$ is orientable. And by problem 3 of 2011, Spring, $\mathbb{R}\mathsf{P}^n$ is orientable if and only if either $n \geq 0$ is odd or (trivially) n = 0.

Problem 6.

See problem 4 of 2008, Spring.