

2014 Spring [#2]

2014 Spring #3

2014 Spring
$$[\# 4]$$

Consider the following vector Fields in \mathbb{R}^2 :

 $X = 2\frac{3}{2x} + 2\frac{3}{2y}$, $Y = \frac{3}{2y}$.

Determine whether or not \exists (locally defined) coordinate.

Sportion (Sut) in a right of $(x,y) = (0,1)$ s.t.

 $X = \frac{3}{2s}$, $Y = \frac{3}{2t}$

Let $\phi: \mathbb{R}^2 - > \mathbb{R}^2$ be defined by $\phi(x,y) = (s(x,y), t(x,y))$

Then $\frac{3}{2s} = \delta \phi_r(\frac{3}{2x})$ and $\frac{3}{2t} = \delta \phi_r(\frac{3}{2y})$
 $= \frac{3s}{2x}\frac{3}{2x} + \frac{3t}{2x}\frac{3}{2y}$
 $= \frac{3s}{2x}\frac{3}{2x} + \frac{3t}{2x}\frac{3}{2y}$

Then we not

 $\frac{3s}{2x} = 2$, $\frac{3t}{2x} = x$, $\frac{3s}{2y} = 0$, $\frac{3t}{2y} = 1$

This is satisfied by $s = 2x$, $t = \frac{1}{2}x^2 + y$ e.g.,

Then int $(0,1)$, $\delta \phi_{(0,1)} = (\frac{20}{x+1})|_{(0,1)} = (\frac{20}{0+1})$ invertible.

 \Rightarrow by inverse function them. $\exists h bd of (0,1)$

S.t. δ is a little one of the δ .

[2014 Spring [#5]] $M = \{(x,u); x \in M, a: T_xM \rightarrow R \text{ linear }\}$ $Clain: T^*M = \{(x,u); x \in M, a: T_xM \rightarrow R \text{ linear }\}$

Let (V,b) be a chut in M, $p:V \stackrel{\cong}{=} > p(V) \subset \mathbb{R}^n$. Let $\widetilde{V} = \{(x,u) \in T^*M : x \in V \}$ and $\widetilde{p}:\widetilde{V} \longrightarrow \mathbb{R}^n \times \mathbb{R}^n$ be defined by $\widetilde{b}(x,u) = (p(x), u(\frac{3}{2x}), ..., u(\frac{3}{2xn}))$. Which is a homeomorphism Since p is a homeomorphism and u is linear. Thus we see that T^*M is a mfd. An orientation form for T^*M would

Define $W_{(x,u)}: \left(T_{(x,u)}(T^*M)\right)^{2n} \longrightarrow \mathbb{R}$

be a 2n-form W, nonvenishing.

2014 Spring [#6]

(1014 Spring #) M compact m-limil submill of Rm×1Rn. Mx for XERM be the trunslation of M by x in R"xR". Then He space of points XERM S.t. Mx AR" infinite his musin O in R". Define f: M < RM x RM ___ > RM Then f sends $(x,y) \longrightarrow X$ a point in M to the XERM s.t. ManR' Contains that point. Assume f sends an infinite amount of points in M to some x_o . (i.e. Mx. 1 R1 infinite). We Claim is a critical value. If not, then by regular level Set Thm, f-1(20) is a submfd of M of Limension M-M=O. I.e. f-1(x0) is a collection of distinct points in M. Since f continuous and {x,3 closel then f-1(x0) closed and there compact M compact. By He subspace topology the points in f'(xo) are open, so there can only be fivilely many, oftense { Eyy: yef-1/x0)} is a infinite open con with no finite subcover. Hence Xo critical value and by Sord's they have measure O in RM.