2011, Spring

Problem 1.

We have $d\omega = dx_1 \wedge dx_2 \wedge dx_3 \wedge dx_4$ by a simple computation, and so

$$\int_{\mathsf{S}^3} \omega = \int_{\mathsf{B}^4} \mathsf{d}\omega = \int_{\mathsf{B}^4} \mathsf{d}x_1 \wedge \mathsf{d}x_2 \wedge \mathsf{d}x_3 \wedge \mathsf{d}x_4 = \mathsf{vol}(\mathsf{B}^4)$$

by Stokes.

Problem 2.

• Consider the smooth map $f: \mathbb{R}^6 \to \mathbb{R}^3$ given by

$$f(x,y) := (\underbrace{x_1^2 + x_2^2 + x_3^2}_{=||x||^2}, \underbrace{y_1^2 + y_2^2 + y_3^2}_{=||y||^2}, \underbrace{x_1y_1 + x_2y_2 + x_3y_3}_{=\langle x,y\rangle}).$$

Then $M = f^{-1}(1,1,0)$ by definition. For any $(x,y) \in f^{-1}(1,1,0)$, consider the differential

$$\mathsf{d}f_{(x,y)} = \begin{pmatrix} 2x_1 & 2x_2 & 2x_3 & 0 & 0 & 0\\ 0 & 0 & 0 & 2y_1 & 2y_2 & 2y_3\\ y_1 & y_2 & y_3 & x_1 & x_2 & x_3 \end{pmatrix}$$

Now there must be $1 \le i, j \le 3$ such that $x_i, y_j \ne 0$ (since ||x||, ||y|| = 1) with $i \ne j$ (since $\langle x, y \rangle = 0$). Then the first row is nonzero in the *i*-th column, the second row in the (3+j)-th column, and the last row in the *j*-th and (3+i)-th columns. Thus (1,1,0) is a regular value of f, whereby M is an embedded 3-dimensional submanifold of \mathbb{R}^6 .

- Since f is continuous, the preimage M of the closed point (1,1,0) is closed. So to see that M is compact, it remains to check that M is bounded. But this is immediate since for any $(x,y) \in M$, we have $\|(x,y)\|^2 = \|x\|^2 + \|y\|^2 = 2$.
- Let $u: \mathbb{R}^3 \to \mathbb{R}$ be given by $u(x) := ||x||^2$, so that $\mathsf{S}^2 = u^{-1}(1)$. Then at each point $x \in \mathbb{R}^3$, upon canonically identifying $\mathsf{T}_x \mathbb{R}^3 \cong \mathbb{R}^3$, we get

$$\mathsf{T}_x\mathsf{S}^2=\ker(\mathsf{d} u_x)=\ker\left(2x_1\quad 2x_2\quad 2x_3\right)=\{y\in\mathbb{R}^3\mid \langle x,y\rangle=0\},$$

and so

$$M = \{(x,y) \in \mathbb{R}^6 \mid \|x\| = 1, \|y\| = 1, \langle x,y \rangle = 0\} \cong \{(x,y) \mid x \in \mathsf{S}^2, y \in \mathsf{T}_x \mathsf{S}^2, \|y\| = 1\}.$$

The right-hand side is precisely the definition of the unit tangent bundle of S^2 .

Problem 3.

(a) Firstly, $\mathbb{R}\mathsf{P}^1 \cong \mathsf{S}^1$ and so $\pi_1(\mathbb{R}\mathsf{P}^1) \cong \pi_1(\mathsf{S}^1) \cong \mathbb{Z}$. If now $n \geq 2$, then $\mathbb{R}\mathsf{P}^n$ is the quotient of S^n by the antipodal action of \mathbb{Z}_2 defined by $1 \cdot x := x$ and $-1 \cdot x := -x$ for all $x \in \mathsf{S}^n$. Then \mathbb{Z}_2 is the group of deck transformations of the (normal, simply connected) universal cover $\mathsf{S}^n \to \mathbb{R}\mathsf{P}^n$, and so $\pi_1(\mathbb{R}\mathsf{P}^n) \cong \mathbb{Z}_2$.

- (b) We may construct S^n by starting with two 0-cells e^0_-, e^0_+ , then gluing on two "half-circle" 1-cells e^1_-, e^1_+ , then gluing on two "half-sphere" 2-cells e^2_-, e^2_+ , etc., until we've glued on two "half-sphere" n-cells e^n_-, e^n_+ . In the quotient $\mathbb{R}\mathsf{P}^n = \mathsf{S}^n/\mathbb{Z}_2$, we identify e^j_- and e^j_+ for each $0 \le j \le n$. Thus $\mathbb{R}\mathsf{P}^n$ consists of exactly one j-cell e^j (with attaching map the 2-fold cover $p_{j-1}:\mathsf{S}^{j-1} \to \mathbb{R}\mathsf{P}^{j-1}$) for each $0 \le j \le n$.
- (c) By (b), the cellular chain complex $(C^{CW}_{\bullet}(\mathbb{R}P^n), \partial_{\bullet})$ of $\mathbb{R}P^n$ is given by

$$0 \longrightarrow \mathbb{Z}\langle e^n \rangle \xrightarrow{\partial_n} \mathbb{Z}\langle e^{n-1} \rangle \xrightarrow{\partial_{n-1}} \cdots \xrightarrow{\partial_2} \mathbb{Z}\langle e^1 \rangle \xrightarrow{\partial_1} \mathbb{Z}\langle e^0 \rangle \longrightarrow 0.$$

Now fix some $1 \leq j \leq n$ and recall that the boundary map $\partial_j : C_j^{CW}(\mathbb{R}P^n) \to C_{j-1}^{CW}(\mathbb{R}P^n)$ is given by $\partial_j(e^j) = \deg(q_{j-1} \circ p_{j-1})e^{j-1}$, where q_{j-1} is the natural quotient map in the diagram

$$\mathsf{S}^{j-1} \xrightarrow{p_{j-1}} \mathbb{R}\mathsf{P}^{j-1} \xrightarrow{q_{j-1}} \mathbb{R}\mathsf{P}^{j-1}/\mathbb{R}\mathsf{P}^{j-2} \cong \mathsf{S}^{j-1}.$$

The restriction maps $q_{j-1} \circ p_{j-1}|_{e_-^{j-1}}, q_{j-1} \circ p_{j-1}|_{e_+^{j-1}}$ are homeomorphisms from the two hemispheres $e_-^{j-1}, e_+^{j-1} \subset S^{j-1}$, respectively, onto the space $\mathbb{R}\mathsf{P}^{j-1} \setminus \mathbb{R}\mathsf{P}^{j-2}$. Furthermore, letting $a: S^{j-1} \to S^{j-1}$ be the degree- $(-1)^j$ antipodal map, we have that

$$q_{j-1} \circ p_{j-1}|_{e_{-}^{j-1}} = q_{j-1} \circ p_{j-1}|_{e_{+}^{j-1}} \circ a,$$

and so

$$\deg(q_{j-1}\circ p_{j-1}) = \deg\left(q_{j-1}\circ p_{j-1}\big|_{e_{-}^{j-1}}\right) + \deg\left(q_{j-1}\circ p_{j-1}\big|_{e_{+}^{j-1}}\right) = (-1)^{j} + 1 = \begin{cases} 0 & j \text{ odd,} \\ 2 & j \text{ even.} \end{cases}$$

Thus if n is odd or even, then the cellular chain complex of $\mathbb{R}P^n$ is given by

$$0 \longrightarrow \mathbb{Z}\langle e^n \rangle \stackrel{0}{\longrightarrow} \mathbb{Z}\langle e^{n-1} \rangle \stackrel{2}{\longrightarrow} \cdots \stackrel{2}{\longrightarrow} \mathbb{Z}\langle e^1 \rangle \stackrel{0}{\longrightarrow} \mathbb{Z}\langle e^0 \rangle \longrightarrow 0$$

or

$$0 \longrightarrow \mathbb{Z}\langle e^n \rangle \stackrel{2}{\longrightarrow} \mathbb{Z}\langle e^{n-1} \rangle \stackrel{0}{\longrightarrow} \cdots \stackrel{2}{\longrightarrow} \mathbb{Z}\langle e^1 \rangle \stackrel{0}{\longrightarrow} \mathbb{Z}\langle e^0 \rangle \longrightarrow 0,$$

respectively. From the sequences above, for 0 < j < n,

$$\mathsf{H}^{\mathsf{CW}}_{j}(\mathbb{R}\mathsf{P}^{n}) \cong \frac{\ker(\partial_{j})}{\mathsf{im}(\partial_{j+1})} \cong \begin{cases} \ker(0)/\mathsf{im}(2) & j \text{ odd,} \\ \ker(2)/\mathsf{im}(0) & j \text{ even.} \end{cases} \cong \begin{cases} \mathbb{Z}/2\mathbb{Z} & j \text{ odd,} \\ 0 & j \text{ even.} \end{cases}$$

By path connectedness, $H_0^{CW}(\mathbb{R}P^n) \cong \mathbb{Z}$. And,

$$\mathsf{H}_n^{\mathsf{CW}}(\mathbb{R}\mathsf{P}^n) \cong \ker(\partial_n) \cong \begin{cases} \mathbb{Z} & n \text{ odd,} \\ 0 & n \text{ even.} \end{cases}$$

It's clear that $\mathsf{H}^\mathsf{CW}_j(\mathbb{R}\mathsf{P}^n)\cong 0$ for all j>n.

(d) $\mathbb{R}\mathsf{P}^n$ is orientable if and only if $n \geq 1$ is odd. Recall that a compact connected oriented (topological) n-manifold X without boundary has $\mathsf{H}_n(X;\mathbb{Z}) \cong \mathbb{Z}$. So by (c), $\mathbb{R}\mathsf{P}^n$ is unorientable if n is even. If n is odd, then a choice of connected component of $\mathsf{H}_n(\mathbb{R}\mathsf{P}^n;\mathbb{Z})\setminus 0 \cong \mathbb{Z}\setminus 0$ specifies an orientation on $\mathbb{R}\mathsf{P}^n$.

Problem 4.

See problem 5 of 2013, Fall, replacing g by f, and replacing f by a constant map.

Problem 5.

Remark. The argument below actually works for G an arbitrary connected topological group.

Since G is connected, it suffices to show that $\pi_1(G, 1)$ is abelian. We're done if we can find, for any pair of loops $f, g : [0, 1] \to G$ based at 1, a homotopy between $f \cdot g$ and $g \cdot f$, where \cdot is the product in G. Consider the families of maps $\{u_t : [0, 1] \to G\}_{0 < t < 1}$ and $\{v_t : [0, 1] \to G\}_{0 < t < 1}$ given by

$$u_t(s) := \begin{cases} f\left(\frac{2s}{t+1}\right) & 0 \le s \le \frac{1+t}{2}, \\ 1 & \frac{1+t}{2} \le s \le 1, \end{cases} \quad v_t(s) := \begin{cases} 1 & 0 \le s \le \frac{1-t}{2}, \\ g\left(\frac{2s+t-1}{t+1}\right) & \frac{1-t}{2} \le s \le 1. \end{cases}$$

Then the family of maps $\{w_t : [0,1] \to G\}_{0 \le t \le 1}$ given by $w_t := u_t \cdot v_t$ yields a homotopy between f * g and $f \cdot g$,

$$w_0 = u_0 \cdot v_0 = (f * 1) \cdot (1 * g) = (f \cdot 1) * (1 \cdot g) = f * g, \quad w_1 = u_1 \cdot v_1 = f \cdot g.$$

We may similarly construct a homotopy between f * g and $g \cdot f$, and it follows that there exists a homotopy between $f \cdot g$ and $g \cdot f$.

Problem 6.

Firstly, there must be some point $x \in M$ with K(x) > 0, since M is a compact oriented surface of genus $g \ge 1$. But also (recalling that $\partial M = \emptyset$) we have by Gauss-Bonnet that

$$\iint_M K dA = 2\pi \chi(M) = 2\pi (2 - 2g) \le 0$$

since $g \geq 1$, and so $K \leq 0$ on some nonempty subset of M. In particular, there's some point $y \in M$ with $K(y) \leq 0$. Therefore, since K is continuous on M, there must be some point $z \in M$ with K(z) = 0 by the intermediate value theorem.