2006, Spring

Problem 1.

Let $f: \mathbb{R}^4 \to \mathbb{R}$ be given by $f(x, y, z, w) := x^2 + xy^3 + yz^4 - w^5 + 1$. To show that $X := f^{-1}(0) \subset \mathbb{R}^4$ is a manifold, it's enough to show that the linear map

$$df_{(x,y,z,w)} = \begin{pmatrix} 2x + y^3 & 3xy^2 + z^4 & 4yz^3 & -5w^4 \end{pmatrix}$$

from X to \mathbb{R} is surjective for all $(x, y, z, w) \in X$; so we need at least one entry in this matrix to be nonzero. To see this, let $(x, y, z, w) \in X$ and observe that at least one coordinate is nonzero by definition of X.

- Say $x \neq 0$. If y = 0 then $2x + y^3 \neq 0$. If $y \neq 0$ and z = 0 then $3xy^2 + z^4 \neq 0$. If $y, z \neq 0$ then $4yz^3 \neq 0$.
- Say $y \neq 0$. If $z \neq 0$ then $4yz^3 \neq 0$. If z = 0 and $x \neq 0$ then $3xy^2 + z^4 \neq 0$. If z, x = 0 then $2x + y^3 \neq 0$.
- Say $z \neq 0$. If $y \neq 0$ then $4yz^3 \neq 0$. If y = 0 then $3xy^2 + z^4 \neq 0$.
- Say $w \neq 0$. Then $-5w^4 \neq 0$.

Problem 2.

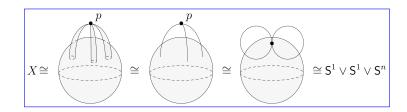
- (a) Given a manifold X, the de Rham cochain complex $(\Omega^{\bullet}(X), d^{\bullet})$ is defined in each degree $j \in \mathbb{Z}$ by $\Omega^{j}(X) := \{\omega \text{ a smooth } j\text{-form on } X\}$ and $d^{j}: \Omega^{j}(X) \to \Omega^{j+1}(X)$ the usual exterior differential. The j-th de Rham cohomology group of X is the quotient $H^{j}_{dR}(X) := \ker(d^{j})/\operatorname{im}(d^{j-1})$.
- (b) Firstly, $\mathsf{H}^j_{\mathsf{dR}}(\mathbb{R}) \cong 0$ for any $j \geq 2$ since $\Omega^j(\mathbb{R}) = 0$ in this case. Now note that both $\Omega^0(\mathbb{R})$ and $\Omega^1(\mathbb{R})$ are canonically isomorphic to $\mathsf{C}^\infty(\mathbb{R})$. Then

$$\mathsf{H}^0_\mathsf{dR}(\mathbb{R}) \cong \mathsf{ker}(\mathsf{d}^0) \cong \{ f \in \mathsf{C}^\infty(\mathbb{R}) \mid \mathsf{d}f = 0 \} \cong \{ f \in \mathsf{C}^\infty(\mathbb{R}) \mid f \text{ a constant} \} \cong \mathbb{R}.$$

Moreover, any $f \in \Omega^1(\mathbb{R})$ may be written as $f = \mathsf{d}g$ for $g \in \Omega^0(\mathbb{R})$ given by $g(x) := \int_{-\infty}^x f(x) \mathsf{d}x$, and so $\mathsf{im}(\mathsf{d}^0) = \Omega^1(\mathbb{R})$. Thus $\mathsf{H}^1_{\mathsf{dR}}(\mathbb{R}) \cong \mathsf{ker}(\mathsf{d}^1)/\mathsf{im}(\mathsf{d}^0) \cong \Omega^1(\mathbb{R})/\Omega^1(\mathbb{R}) \cong 0$.

Problem 3.

By pinching the points q, r, s together and then transforming the shape as shown, we obtain a wedge of S^n with two copies of S^1 .



Hence by van Kampen, $\pi_1(X) \cong \pi_1(\mathsf{S}^1) * \pi_1(\mathsf{S}^1) * \pi_1(\mathsf{S}^n) \cong \begin{cases} \mathsf{F}_3 & n = 1, \\ \mathsf{F}_2 & n \geq 2, \end{cases}$

Problem 4.

The canonical volume form on \mathbb{R}^4 with coordinates (x, y, z, w) is $dx \wedge dy \wedge dz \wedge dw$. Hence

$$\int_{\mathsf{S}^3} \omega = \int_{\mathsf{B}^4} \mathsf{d}\omega = \int_{\mathsf{B}^4} \mathsf{d}w \wedge \mathsf{d}x \wedge \mathsf{d}y \wedge \mathsf{d}z = -\int_{\mathsf{B}^4} \mathsf{d}x \wedge \mathsf{d}y \wedge \mathsf{d}z \wedge \mathsf{d}w = -\mathsf{vol}(\mathsf{B}^4)$$

by Stokes.

Problem 5.

Background. The pairing $\smile: \mathsf{H}^1_{\mathsf{dR}}(T) \otimes \mathsf{H}^1_{\mathsf{dR}}(T) \to \mathbb{R}$ referenced in this problem is the *cup product* discussed in problem 7 of 2005, Fall.

Since $\frac{1}{2} \text{dim}_{\mathbb{R}}(\mathsf{H}^1_{\mathsf{dR}}(S)) = \mathsf{g}(S) < \mathsf{g}(T) = \frac{1}{2} \text{dim}_{\mathbb{R}}(\mathsf{H}^1_{\mathsf{dR}}(T))$, the map $h^* : \mathsf{H}^1_{\mathsf{dR}}(T) \to \mathsf{H}^1_{\mathsf{dR}}(S)$ is has nontrivial kernel. So, suppose $\alpha \in \mathsf{ker}(h^*)$ is nonzero. Then the map

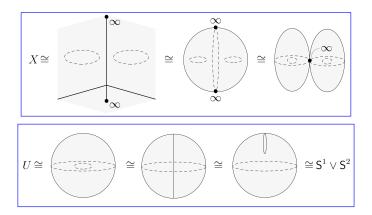
$$\alpha\smile(\cdot):\mathsf{H}^1_{\mathsf{dR}}(T)\to\mathsf{Hom}_{\mathbb{R}}(\mathsf{H}^1_{\mathsf{dR}}(T),\mathbb{R})$$

given by $\eta \mapsto \alpha \smile \eta := \int_T \alpha \wedge \eta$ is nonzero, since the pairing \smile : $\mathsf{H}^1_{\mathsf{dR}}(T) \otimes \mathsf{H}^1_{\mathsf{dR}}(T) \to \mathbb{R}$ given by $\omega \smile \eta := \int_T \omega \wedge \eta$ is nondegenerate. Thus there's some element $\beta \in \mathsf{H}^1_{\mathsf{dR}}(T)$ such that $\int_T \alpha \wedge \beta \neq 0$, and so

$$\deg(h)\underbrace{\int_T \alpha \wedge \beta}_{\neq 0} = \int_S h^*(\alpha \wedge \beta) = \int_S \underbrace{(h^*\alpha)}_{=0} \wedge (h^*\beta) = 0.$$

Problem 6.

• Let X be the complement of the unlink in S^3 . By the homotopy below, we view X as a wedge sum of two copies of U, where U is a solid sphere with a circle removed inside. In U, we first stretch the missing circle until we're left with the surface of the sphere together with a line segment connecting the poles; we then translate the south pole along the surface and onto the north pole to obtain the wedge sum shown.

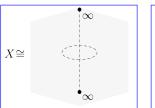


Hence $X \cong U \vee U \cong S^1 \vee S^1 \vee S^2 \vee S^2$, and so

$$\mathsf{H}_{j}(X) \cong \mathsf{H}_{j}(\mathsf{S}^{1})^{\oplus 2} \oplus \mathsf{H}_{j}(\mathsf{S}^{2})^{\oplus 2} \cong \begin{cases} \mathbb{Z} & j = 0, \\ \mathbb{Z}^{\oplus 2} & j = 1, 2, \\ 0 & \text{else}, \end{cases}$$

where the j=0 case follows from the fact that X is path connected.

• Let X be the complement of the Hopf link in S^3 . We assume w.l.o.g. that one of the circles passes through ∞ , and hence is visualized as a vertical axis in \mathbb{R}^3 , surrounded by the second circle. Then X is the union of all vertical planes starting at this axis, and each such plane is equivalent to a circle itself, as shown.

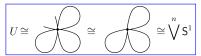


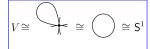
It follows that
$$X \cong \mathsf{S}^1 \times \mathsf{S}^1 \cong \mathsf{T}^2$$
, and $\mathsf{H}_j(X) \cong \mathsf{H}_j(\mathsf{T}^2) \cong \begin{cases} \mathbb{Z} & j = 0, \\ \mathbb{Z}^{\oplus 2} & j = 1, \\ \mathbb{Z} & j = 2, \\ 0 & \text{else.} \end{cases}$

Problem 7.

Background. In part (b) we prove the Nielsen-Schreier theorem.

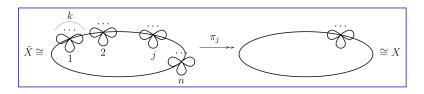
(a) We proceed by induction on n. The case n=0 is immediate since $\pi_1(S^1) \cong \mathbb{Z} \cong F_1$, so let $n \geq 1$ be arbitrary and assume $\pi_1(\bigvee^n S^1) \cong F_n$. Defining





gives $U \cup V \cong \bigvee^{n+1} \mathsf{S}^1$ and $U \cap V \cong *$, so $\pi_1 \Big(\bigvee^{n+1} \mathsf{S}^1 \Big) \cong \pi_1 \Big(\bigvee^n \mathsf{S}^1 \Big) * \pi_1 (\mathsf{S}^1) \cong \mathsf{F}_n * \mathsf{F}_1 \cong \mathsf{F}_{n+1}$ by van Kampen. \square

(b) Let $X := \bigvee^{n+1} \mathsf{S}^1$. If $H \subset \mathsf{F}_{n+1} \cong \pi_1(X)$ is a subgroup with $[\mathsf{F}_{n+1} : H] = k$, then $H \cong \pi_1(\tilde{X})$ for some k-fold covering space $\tilde{X} \twoheadrightarrow X$. Note that \tilde{X} is a connected graph since it's a covering space of a connected graph, and thus \tilde{X} is homotopy equivalent to a wedge of circles. We observe that the covering space



obtained by attaching k copies of $\bigvee^n \mathsf{S}^1$ to a base circle gives the desired wedge product, and

$$H \cong \pi_1(\tilde{X}) \cong \pi_1\Big(\bigvee^{kn+1}\mathsf{S}^1\Big) \cong \mathsf{F}_{kn+1}.$$