Geometry/Topology Qualifying, Spring 2006

Partial credit for partial solutions

- 1. Let (x, y, z, w) be Cartesian coordinates on \mathbb{R}^4 . Is the set defined by the equation $x^2 + xy^3 + yz^4 w^5 = -1$ a smooth manifold of \mathbb{R}^4 ? Prove your assertion.
- 2. a) State the definition of the *i*th de Rham cohomology group $H^i_{dR}(M)$ of a smooth manifold M.
- b) Compute the ith de Rham cohomology groups of the real line R directly from the definition for all i ≥ 0.
- 3. Let X be the quotient space obtained from the n-dimensional sphere S^n by identifying three distinct points to a single common point $p \in X$. In other words, let $q, r, s \in S^3$ be pairwise distinct points, let $X = S^n / \sim$ where $x \sim y$ if x = y or if $x, y \in \{q, r, s\}$, and let $p \in X$ denote the equivalence class $\{q, r, s\}$. Calculate $\pi_1(X, p)$.
- 4. Let $S^3=\{(x,y,z,w): x^2+y^2+z^2+w^2=1\}\subset \mathbf{R}^4$ and let $\omega=w\ dx\wedge dy\wedge dz$. Compute $\int_{S^3}\omega$.
- 5. Recall that the genus of a closed orientable surface Σ is defined to be ½ dim_R H¹_{dR}(Σ). Let S and T be closed orientable surfaces of respective genera g(S) and g(T). Assume g(S) < g(T). Show that the degree of any smooth map h : S → T equals zero. [You may use the fact that on a closed orientable surface Σ, the wedge product of one-forms induces a skew-symmetric non-degenerate bilinear pairing H¹_{dR}(Σ) ⊗ H¹_{dR}(Σ) → H²_{dR}(Σ) ≈ R, where H¹_{dR}(F) denotes the ith de Rham cohomology group of Σ.]
- 6. Define the unlink to be the union of two unknotted circles in the three-dimensional sphere S³, where there are two disjoint three-dimensional balls in S³ containing the circles. Define the Hopf link to be the union of two unknotted disjoint circles in S³, where each circle meets a disk bounding the other circle in a single point. These links are illustrated in the figure below drawn in R³ = S³ {the point at infinity}. Let U be the complement in S³ to the unlink and let H be the complement in S³ to the Hopf link. Calculate the homology groups of U and H.

OO CO unlink Hopflink

- 7. Let X denote a bouquet of n + 1 circles, i.e., X is the quotient of the disjoint union of n + 1 circles with base points obtained by identifying all the base points to a single point p in the quotient.
- a) Prove that $\pi_1(X, p)$ is a free group F_{n+1} on n+1 generators.
- b) Let H be a subgroup of F_{n+1} of index k. Show that H is a free group with kn + 1 generators.