Geometry/Topology Qualifying Exam

February 2005

Solve all SEVEN problems. Partial credit will be given to partial solutions.

- 1. For each n>0 and every $m\in \mathbb{Z}$, show that there exists a smooth map $f:S^n\to S^n$ of degree m.
- 2. Let $T^2 = \mathbb{R}^2/\mathbb{Z}^2$ be a 2-dimensional torus with standard Euclidean coordinates (x, y) inherited from \mathbb{R}^2 .
 - (a) Prove that for any 2-form ω_2 on T^2 there is a 1-form ω_1 on T^2 and a real number a such that

$$\omega_2 = adx \wedge dy + d\omega_1.$$

(b) Prove that for any closed 1-form ω_1 on T^2 there is a smooth function f on T^2 and real numbers a,b so that

$$\omega_1 = adx + bdy + df.$$

- 3. Let M be a nonorientable smooth manifold and i: M → R^m be an immersion. Define the normal bundle v → M to be the set of points (x, v) where x ∈ M and v ∈ R^m is orthogonal to i_{*}(T_xM) (with respect to the standard Euclidean metric on R^m). Here i_{*} is the induced map T_xM → T_{i(x)}R^m between tangent spaces and we are identifying T_{i(x)}R^m with R^m.
 - (a) Prove that ν can be given the structure of a smooth manifold.
 - (b) Is ν an orientable manifold?
- 4. Let A be a nonsingular symmetric $n \times n$ matrix and c a nonzero real number. (A matrix is nonsingular if det $A \neq 0$ and symmetric if $A^T = A$.) Show that

$$\{x \in \mathbf{R}^n \mid \langle x, Ax \rangle = c\}$$

is a submanifold of \mathbb{R}^n . Here \langle , \rangle is the standard inner product on \mathbb{R}^n . What is the dimension of the submanifold?

- 5. Compute the second homotopy group $\pi_2(S^2 \vee S^1)$ of the wedge sum of S^2 and S^1 .
- 6. Let Σ be an embedded compact surface without boundary in R³. Then prove that there is a point x ∈ Σ where the Gaussian curvature K(x) is positive. Here the Gaussian curvature is computed with respect to the metric induced from R³.

Continued on the next page.

7. Let X be the complement of the knot K in the solid torus $S^1 \times D^2$ as in Figure 1. Compute the homology groups $H_i(X; \mathbf{Z})$.

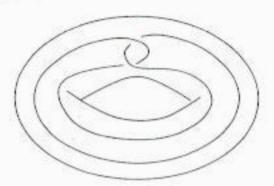


FIGURE 1