Geometry/Topology Qualifying Exam

February 2004

Partial credit will be given to partial solutions.

- 1. Let M be a compact orientable manifold of dimension n (without boundary). Let $\omega \in \Omega^n(M)$ be an n-form on M and X a vector field on M. Prove that $\mathcal{L}_X \omega = 0$ at some point $p \in M$. (Here $\mathcal{L}_X \omega$ is the Lie derivative of ω in the direction X.)
- 2. Let

$$\omega = \frac{xdy \wedge dz + ydz \wedge dx + zdx \wedge dy}{(x^2 + y^2 + z^2)^{3/2}}$$

be a 2-form defined on $\mathbf{R}^3 - \{0\}$. If $i: S^2 = \{x^2 + y^2 + z^2 = 1\} \to \mathbf{R}^3$ is the inclusion, then compute $\int_{S^2} i^*\omega$. Also compute $\int_{S^2} j^*\omega$, where $j: S^2 \to \mathbf{R}^3$ maps $(x,y,z) \to (3x,2y,8z)$.

- 3. Consider the set $X \subset \mathbf{R}^4$ defined by the simultaneous equations $x^2 + y^2 z^2 w^2 = 1$ and xz + yw = 1. Is X a smooth submanifold of \mathbf{R}^4 ?
- 4. Show that any smooth function g: RP²ⁿ → RP²ⁿ has a fixed point. Here RP^k is the real projective space, defined as the quotient of the k-dimensional sphere S^k = {|x| = 1} ⊂ R^{k+1} by the equivalence relation x ~ -x.
- 5. Let $S^1 = \{x^2 + y^2 = 1, z = 0\}$ denote the boundary of the unit disk in $\mathbf{R}^2 \subset \mathbf{R}^3$ (where \mathbf{R}^3 has standard coordinates (x, y, z)). Calculate the fundamental group of $\mathbf{R}^3 S^1$.
- Let X be a connected covering space of the 2-dimensional torus T² = S¹ × S¹. List all the possible homeomorphism types of X.
- 7. For a topological space X, its suspension ΣX is the quotient $(X \times [0,1])/\sim$ of $X \times [0,1]$ obtained by collapsing $X \times \{0\}$ to one point and $X \times \{1\}$ to another point. (More precisely, the equivalence relation \sim is given by:

$$\forall x, x' \in X \ (x, 0) \sim (x', 0) \ \text{and} \ (x, 1) \sim (x', 1).)$$

For any $p \geq 2$, prove that $H_p(\Sigma X, \mathbf{Z})$ is isomorphic to $H_{p-1}(X, \mathbf{Z})$, where \mathbf{Z} is the set of integers. What happens when p = 0, 1?