Geometry/Topology Qualifying Exam

February 2003

Partial credit will be given to partial solutions.

- Let M be a compact orientable manifold M of dimension 2n (without boundary), and let ω be a symplectic form on M, namely a differential form of degree 2 whose n-th exterior power ω ∧ ω ∧ · · · ∧ ω does not vanish at any point. Prove that the second de Rham cohomology H²_{dR}(M; R) ≠ 0 by showing that ω is not exact.
- 2. Show that the set $Sl(n, \mathbf{R})$ of $n \times n$ matrices A with entries in the real numbers and which satisfy det(A) = 1 is a manifold. What is its dimension?
- 3. On \mathbf{R}^4 with coordinates x_1, y_1, x_2, y_2 , consider the 2-form $\omega = dx_1 \wedge dy_1 + dx_2 \wedge dy_2$. Given a smooth function f on \mathbf{R}^4 , let X be the vector field

$$X = \frac{\partial f}{\partial y_1} \frac{\partial}{\partial x_1} - \frac{\partial f}{\partial x_1} \frac{\partial}{\partial y_1} + \frac{\partial f}{\partial y_2} \frac{\partial}{\partial x_2} - \frac{\partial f}{\partial x_2} \frac{\partial}{\partial y_2}.$$

Then compute $\mathcal{L}_{X}\omega$, the Lie derivative of ω in the direction X.

- Let M be a compact oriented n-dimensional manifold (without boundary), where n > 1. Show that there exists a differentiable map f : M → Sⁿ of degree 1.
- 5. Recall that two coverings $p: \widetilde{X} \to X$ and $p': \widetilde{X}' \to X$ are equivalent if there exists a homeomorphism $\varphi: \widetilde{X} \to \widetilde{X}'$ such that $p' \circ \varphi = p$. When X is the 2-dimensional torus $S^1 \times S^1$, determine the number of equivalence classes of all coverings $p: \widetilde{X} \to X$ such that $p^{-1}(x_0)$ consists of 3 points (for an arbitrary x_0).
- Compute the homology groups H_n(X; Z) of the complement X = R⁵ − A of a subset A ⊂ R⁵ consisting of 4 points.
- 7. Let Bⁿ be the closed unit ball in Rⁿ, and let Sⁿ⁻¹ be its boundary, namely the (n-1)-dimensional sphere. If f: Bⁿ → Rⁿ is a continuous map such that f(x) = x for every x ∈ Sⁿ⁻¹, show that the image f(Bⁿ) contains the ball Bⁿ.