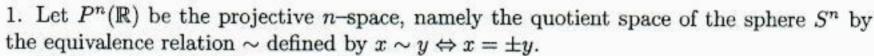
Graduate Exam in Topology/Geometry

February 2002



- (a) Show that Pⁿ(R) is a manifold.
- (b) Show that $P^n(\mathbb{R})$ is orientable if and only if n is odd.
- 2. In the set M(n) of all $n \times n$ matrices, identified to \mathbb{R}^{n^2} , consider the subset O(n) consisting of the orthogonal matrices, namely those matrices A for which AA^t is the identity (where A^t denotes the transpose). Show that O(n) is a submanifold of $M(n) = \mathbb{R}^{n^2}$, and that the tangent space $T_{\mathrm{Id}}O(n)$ at the identity Id is equal to the space of all antisymmetric matrices (namely those matrices for which $A^t = -A$).
- 3. Let $f: \mathbb{R}^3 \to \mathbb{R}^3$ given by $f(x,y,z) = (\alpha x + \beta y, \gamma x + \delta y, \varepsilon z)$, where α , β , γ , δ , ε are constants with $\alpha \delta \beta \gamma = 1$. Find the matrix of $f^*: \wedge^2 \mathbb{R}^3 \to \wedge^2 \mathbb{R}^3$ associated to the basis $dy \wedge dz$, $dz \wedge dx$, $dx \wedge dy$.
- 4. Let $P^2(\mathbb{R})$ be the real projective plane.
 - (a) If $x \in P^2(\mathbb{R})$, compute the fundamental group $\pi_1(P^2(\mathbb{R}) \{x\})$.
- (b) Show that any map $f: P^2(\mathbb{R}) \to P^2(\mathbb{R})$ which is not surjective is homotopic to a constant map. (Hint: use a covering space).
- 5. Let B^2 be the closed 2-dimensional ball, with boundary the circle S^1 . Let $X = S^1 \times B^2$ and let $\partial X = S^1 \times S^1$. Compute the relative homology groups $H_n(X, \partial X)$ with coefficients in Z. (You are allowed to use whatever you may know about the homology of the torus ∂X).
- 6. Let X be the figure eight OO , union of two circles C_1 and C_2 meeting in one point. Let $p: \widetilde{X} \to X$ be a covering space such that \widetilde{X} is connected and such that the preimage $p^{-1}(x)$ of each $x \in X$ consists of 2 points. Compute the fundamental group of \widetilde{X} .
- 7. What are the compact connected surfaces S for which there exists an immersion $S \to S$ which is not a diffeomorphism? (Hint: Euler characteristic).