Topology Qualifying Exam Fall 2025

1. Consider S^3 , viewed as the one point compactification of \mathbb{R}^3 with the point \star at infinity. Let $X \subset S^3$ be the subspace given by the following union.

$$\{(x,y,z) : x^2 + y^2 = 1\} \cup \{(x,y,z) : |z| = 1 \text{ and } x^2 + y^2 \le 1\} \cup \{\star\}$$

- (a) Describe a cell decomposition of X and draw a picture of it.
- (b) Compute the cellular homology of X using the cell decomposition in (a).
- (c) Is X homotopy equivalent to a wedge sum of m copies of the k-sphere for some m and k? Either describe a homotopy equivalence or prove that one does not exist. Your answer should be 2-3 sentences.

Next, consider a space W admitting an open cover $W = A \cup B$ such that

$$H_4(A \cap B) \cong H_3(A) \cong H_3(B) \cong 0,$$

 $H_3(A \cap B) \cong H_4(A) \cong H_4(B) \cong \mathbb{Z}/2\mathbb{Z}.$

- (d) Prove that W does not admit a cell decomposition with only one 4-cell.
- 2. Let $X = \mathbb{RP}^2 \vee S^1$.
 - (a) Compute $\pi_1(X)$.
 - (b) Show that X has a connected 3-sheeted cover which is regular.
 - (c) Compute the group of deck transformations of the cover from part (b).
 - (d) Show that X has a connected 3-sheeted cover which is not regular.
- 3. Consider the space $Y = (\mathbb{RP}^3 \times \mathbb{T}^2) \vee \mathbb{R}/\mathbb{Z}$.
 - (a) Compute the singular homology groups (with $\mathbb Z$ coefficients) of Y.
 - (b) Is Y homotopy equivalent to a orientable closed manifold?
 - (c) Compute the fundamental group $\pi_1(Y)$.

Next, fix $p \in \mathbb{RP}^3$ and consider the loops $\gamma : \mathbb{R}/\mathbb{Z} \to \mathbb{RP}^3 \times \mathbb{T}^2$ and $\eta : \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ given by

$$\gamma(t) = (p, t, 0) \in \mathbb{RP}^3 \times (\mathbb{R}/\mathbb{Z})^2 = \mathbb{RP}^3 \times \mathbb{T}^2$$
 and $\eta(t) = t$

Since $\mathbb{RP}^3 \times \mathbb{T}^2$ and \mathbb{R}/\mathbb{Z} naturally include into Y, we may view γ and η as loops in Y.

- (d) Is there a homotopy equivalence $F:Y\to Y$ such that $F\circ\gamma$ is homotopic to η ? Prove or disprove.
- 4. Let $U(n) \subset GL(n,\mathbb{C})$ be the group of unitary $n \times n$ matrices A. Let e_1 be the unit vector $(1,0,\ldots,0)$ in the unit sphere S^{2n-1} of \mathbb{C}^n and consider the map

$$\pi: U(n) \to S^{2n-1}$$
 given by $\pi(A) = Ae_1 \in S^{2n-1}$

Note that π is a fibration (you do not need to prove this).

- (a) Compute the fiber of π at e_1 .
- (b) Compute the homotopy groups $\pi_1(U(n))$ and $\pi_2(U(n))$ for all $n \ge 1$.