Fall 2024 Solutions

1a

Let $\mathbb{R}P^2 \vee \mathbb{R}P^2$ denote the wedge sum of two copies of $\mathbb{R}P^2$. Explicitly picking a basepoint $x_0 \in \mathbb{R}P^2$ we put:

$$\mathbb{R}P^2 ee \mathbb{R}P^2 := (\mathbb{R}P^2 imes \{x_0\}) \cup (\{x_0\} imes \mathbb{R}P^2) \subset \mathbb{R}P^2 imes \mathbb{R}P^2$$

(a) Compute the fundamental groups of $\mathbb{R}P^2\vee\mathbb{R}P^2$ and $\mathbb{R}P^2\times\mathbb{R}P^2$

proof:

By

Seifert-Van Kampen

Rotman: Corollary 7.42

If K is a simplicial complex, having connected subcomplexes L_1 and L_2 such that $L_1 \cup L_2 = K$ and $L_1 \cap L_2$ is simply connected, then for $v_0 \in \text{Vert}(L_1 \cap L_2)$

$$\pi(K,v_0)\cong \pi(L_1,v_0)*\pi(L_2,v_0)$$

Hatcher: Theorem 1.20

If X is the union of path-connected open sets A_{α} each containing the basepoint $x_0 \in X$ and if each intersection $A_{\alpha} \cap A_{\beta}$ is path-connected, then the homomorphism $\Phi : *_{\alpha}\pi_1(A_{\alpha}) \to \pi_1(X)$ is surjective. If in addition each intersection $A_{\alpha} \cap A_{\beta} \cap A_{\gamma}$ is path-connected, then the kernel of Φ is the normal subgroup N generated by all elements of the form $i_{\alpha\beta}(\omega)i_{\beta\alpha}(\omega)^{-1}$ for $\omega \in \pi_1(A_{\alpha} \cap A_{\beta})$ and hence Φ induces an isomorphism $\pi_1(X) \cong *_{\alpha}\pi_1(A_{\alpha})/N$

Andrews University (simply connected intersection):

If $X = A \cup B$ where A, B open, path connected and $A \cap B$ is simply connected then

$$\pi_1(X) \cong \pi_1(A) * \pi_1(B)$$

Andrews University (general version):

If $X = A \cup B$ where A, B open, path connected and $A \cap B$ is path-connected then

$$\pi_1(X) \cong \pi_1(A) *_{\pi_1(A \cap B)} \pi_1(B)$$

 $\#Algebraic_Topology$

we have that $\pi_1(\mathbb{R}P^2) \cong \mathbb{Z}/2\mathbb{Z}$

Furthermore by

Seifert-Van Kampen

Rotman: Corollary 7.42

If K is a simplicial complex, having connected subcomplexes L_1 and L_2 such that $L_1 \cup L_2 = K$ and $L_1 \cap L_2$ is simply connected, then for $v_0 \in \text{Vert}(L_1 \cap L_2)$

$$\pi(K,v_0)\cong\pi(L_1,v_0)*\pi(L_2,v_0)$$

Hatcher: Theorem 1.20

If X is the union of path-connected open sets A_{α} each containing the basepoint $x_0 \in X$ and if each intersection $A_{\alpha} \cap A_{\beta}$ is path-connected, then the homomorphism $\Phi : *_{\alpha}\pi_1(A_{\alpha}) \to \pi_1(X)$ is surjective. If in addition each intersection $A_{\alpha} \cap A_{\beta} \cap A_{\gamma}$ is path-connected, then the kernel of Φ is the normal subgroup N generated by all elements of the form $i_{\alpha\beta}(\omega)i_{\beta\alpha}(\omega)^{-1}$ for $\omega \in \pi_1(A_{\alpha} \cap A_{\beta})$ and hence Φ induces an isomorphism $\pi_1(X) \cong *_{\alpha}\pi_1(A_{\alpha})/N$

Andrews University (simply connected intersection):

If $X = A \cup B$ where A, B open, path connected and $A \cap B$ is simply connected then

$$\pi_1(X)\cong\pi_1(A)*\pi_1(B)$$

Andrews University (general version):

If $X = A \cup B$ where A, B open, path connected and $A \cap B$ is path-connected then

$$\pi_1(X)\cong \pi_1(A)st_{\pi_1(A\cap B)}\pi_1(B)$$

#Algebraic_Topology

we have $\pi_1(\mathbb{R}P^2 \vee \mathbb{R}P^2) \cong \pi_1(\mathbb{R}P^2) * \pi_1(\mathbb{R}P^2) \cong \langle a, b | a^2 = b^2 = 1 \rangle$

Ву

Fundamental Group of Products is Product of Fundamental Groups

Rotman 3.7

If (X, x_0) and (Y, y_0) are pointed spaces, then

$$\pi_1(X \times Y) \cong \pi_1(X) \times \pi_1(Y)$$

#Algebraic_Topology

we have

$$\pi_1(\mathbb{R}P^2 imes\mathbb{R}P^2)\cong\pi_1(\mathbb{R}P^2) imes\pi_1(\mathbb{R}P^2)\cong\mathbb{Z}_2 imes\mathbb{Z}_2$$

1b

Let $\mathbb{R}P^2 \vee \mathbb{R}P^2$ denote the wedge sum of two copies of $\mathbb{R}P^2$. Explicitly picking a basepoint $x_0 \in \mathbb{R}P^2$ we put:

$$\mathbb{R}P^2 ee \mathbb{R}P^2 := (\mathbb{R}P^2 imes \{x_0\}) \cup (\{x_0\} imes \mathbb{R}P^2) \subset \mathbb{R}P^2 imes \mathbb{R}P^2$$

Prove that $\mathbb{R}P^2 \vee \mathbb{R}P^2$ is not a

Retract

 $\#Algebraic_Topology$

Definition

A subspace $X \subset Y$ of a topological space X is called a **retract** of Y if there exists

with $r \circ i_X = \mathrm{Id}_X$.

of $\mathbb{R}P^2 \times \mathbb{R}P^2$.

proof:

We have from

Fall 2024 1a

Let $\mathbb{R}P^2 \vee \mathbb{R}P^2$ denote the wedge sum of two copies of $\mathbb{R}P^2$. Explicitly picking a basepoint $x_0 \in \mathbb{R}P^2$ we put:

$$\mathbb{R}P^2 ee \mathbb{R}P^2 := (\mathbb{R}P^2 imes \{x_0\}) \cup (\{x_0\} imes \mathbb{R}P^2) \subset \mathbb{R}P^2 imes \mathbb{R}P^2$$

(a) Compute the fundamental groups of $\mathbb{R}P^2 \vee \mathbb{R}P^2$ and $\mathbb{R}P^2 \times \mathbb{R}P^2$

<u>proof:</u>

By Seifert-Van Kampen we have that $\pi_1(\mathbb{R}P^2) \cong \mathbb{Z}/2\mathbb{Z}$

Furthermore by <u>Seifert-Van Kampen</u> we have $\pi_1(\mathbb{R}P^2 \vee \mathbb{R}P^2) \cong \pi_1(\mathbb{R}P^2) * \pi_1(\mathbb{R}P^2) \cong \langle a, b | a^2 = b^2 = 1 \rangle$

By Fundamental Group of Products is Product of Fundamental Groups we have

$$\pi_1(\mathbb{R}P^2 imes \mathbb{R}P^2) \cong \pi_1(\mathbb{R}P^2) imes \pi_1(\mathbb{R}P^2) \cong \mathbb{Z}_2 imes \mathbb{Z}_2$$

 $\#Algebraic_Topology_Qual$

that $\pi_1(\mathbb{R}P^2 \vee \mathbb{R}P^2) \cong \mathbb{Z}_2 * \mathbb{Z}_2$ and $\pi_1(\mathbb{R}P^2 \times \mathbb{R}P^2) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$

Assume we have a retraction $r: \mathbb{R}P^2 \times \mathbb{R}P^2 \to \mathbb{R}P^2 \vee \mathbb{R}P^2$, then we have an induced map $r_*: \pi_1(\mathbb{R}P^2 \times \mathbb{R}P^2)) \to \pi_1(\mathbb{R}P^2 \vee \mathbb{R}P^2)$ which will also act on identity when composed with the i_* inclusion. Thus r_* should be surjective onto $\mathbb{Z}_2 * \mathbb{Z}_2$, but this is not possible since $\pi_1(\mathbb{R}P^2 \times \mathbb{R}P^2)$) is a finite group, while $\mathbb{Z}_2 * \mathbb{Z}_2$ is infinite.

 i_{\ast} must be injective, but this is not possible

1c

Let $\mathbb{R}P^2 \vee \mathbb{R}P^2$ denote the wedge sum of two copies of $\mathbb{R}P^2$. Explicitly picking a basepoint $x_0 \in \mathbb{R}P^2$ we put:

$$\mathbb{R}P^2 ee \mathbb{R}P^2 := (\mathbb{R}P^2 imes \{x_0\}) \cup (\{x_0\} imes \mathbb{R}P^2) \subset \mathbb{R}P^2 imes \mathbb{R}P^2$$

Prove that any map $\mathbb{R}P^2 \vee \mathbb{R}P^2 \to S^1$ is

Rotman:

Nullhomotopic

A continuous map $f: X \to Y$ is nullhomotopic if there is a constant map $x: X \to Y$ with $f \simeq c$ (that is, f is homotopic to c).

Hatcher:

A map is *nullhomotopic* if it is <u>homotopic</u> to a constant map.

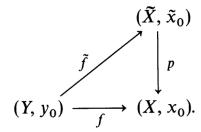
 $\#Algebraic_Topology$

proof:

Lifting Criterion

Rotman:

Lemma 10.3. Let (\tilde{X}, p) be a covering space of X, let Y be a connected space, and let $f: (Y, y_0) \to (X, x_0)$ be continuous. Given \tilde{x}_0 in the fiber over x_0 , there is at most one continuous $\tilde{f}: (Y, y_0) \to (\tilde{X}, \tilde{x}_0)$ with $p\tilde{f} = f$.



Theorem 10.13 (Lifting Criterion). Let Y be connected and locally path connected, and let $f: (Y, y_0) \to (X, x_0)$ be continuous. If (\widetilde{X}, p) is a covering space of X, then there exists a unique $\widetilde{f}: (Y, y_0) \to (\widetilde{X}, \widetilde{x}_0)$ (where $\widetilde{x}_0 \in p^{-1}(x_0)$) lifting f if and only if $f_*\pi_1(Y, y_0) \subset p_*\pi_1(\widetilde{X}, \widetilde{x}_0)$.

1d

Let $\mathbb{R}P^2 \vee \mathbb{R}P^2$ denote the wedge sum of two copies of $\mathbb{R}P^2$. Explicitly picking a basepoint $x_0 \in \mathbb{R}P^2$ we put:

$$\mathbb{R}P^2 ee \mathbb{R}P^2 := (\mathbb{R}P^2 imes \{x_0\}) \cup (\{x_0\} imes \mathbb{R}P^2) \subset \mathbb{R}P^2 imes \mathbb{R}P^2$$

Give an example of a map $\mathbb{R}P^2 \times \mathbb{R}P^2 \to \mathbb{R}P^2 \vee \mathbb{R}P^2$ which is not

Nullhomotopic

Rotman

A continuous map $f: X \to Y$ is nullhomotopic if there is a constant map $x: X \to Y$ with $f \simeq c$ (that is, f is homotopic to c).

Hatcher:

A map is *nullhomotopic* if it is <u>homotopic</u> to a constant map.

#Algebraic_Topology

proof:

Consider the map $(a,b) \to a$, the induced map is not trivial so it is not nullhomotopic by Nullhomotopic Map Has Trivial Induced Homomorphism on Fundamental Group

Corollary 3.13. If $\beta: (X, x_0) \to (Y, y_0)$ is (freely) nullhomotopic, then the induced homomorphism $\beta_*: \pi_1(X, x_0) \to \pi_1(Y, y_0)$ is trivial.²

#Algebraic_Topology

3a

Give an example of a path-connected topological space X whose fundamental group is nonzero and isomorphic to $H_1(X)$

proof:

Sn is path connected

Rotman: Ex 1.15

 S^n is path connected for $n \geq 1$

 $\#Algebraic_Topology$

We know by

Sn Fundamental Group

$$\pi_1(S^n)\congegin{cases} \mathbb{Z} & ext{if } n=1\ 0 & ext{otherwise} \end{cases}$$

By n-1 connectedness of Sn

check fundamental group of S^0

 $\#Algebraic_Topology$

that the fundamental group of the circle

$$\pi_1(S^1)\cong \mathbb{Z}$$

and from

Sn Homology Groups

Homology Groups

If n > 0

$$H_k(S^n)\congegin{cases} \mathbb{Z} & ext{if } k=0,n \ 0 & ext{otherwise} \end{cases}$$

If n = 0

$$H_k(S^n)\congegin{cases} \mathbb{Z}\oplus\mathbb{Z} & ext{if } k=0\ 0 & ext{otherwise} \end{cases}$$

Reduced Homology Groups

$$ilde{H}_k(S^n)\congegin{cases} \mathbb{Z} & ext{if } k=n \ 0 & ext{otherwise} \end{cases}$$

Calculation

 $\#Algebraic_Topology$

that the reduced homology of any sphere is

$$ilde{H}_p(S^n) = egin{cases} \mathbb{Z} & ext{if } n = p \ 0 & ext{otherwise} \end{cases}$$

Thus $H_1(S^1) \cong \mathbb{Z} \cong \pi_1(S^1)$

3b

Let X be a connected CW complex and $A \subset X$ a subcomplex such that A is Homotopy Equivalence

Rotman:

A continuous map $f: X \to Y$ is a homotopy equivalence if there is a continuous map $g: Y \to X$ with $g \circ f \simeq 1_X$ and $f \circ g \simeq 1_Y$. Two spaces X and Y have the same homotopy type if there is a homotopy equivalence $f: X \to Y$

Hatcher:

A map $f: X \to Y$ is called a homotopy equivalence if there is a map $g: Y \to X$ such that $fg \simeq 1$ and $gf \simeq 1$. The spaces X and Y are said to be homotopy equivalent or to have the same homotopy type.

#Algebraic_Topology

to S^3 and X/A is

Homotopy Equivalence

Rotman:

A continuous map $f: X \to Y$ is a homotopy equivalence if there is a continuous map $g: Y \to X$ with $g \circ f \simeq 1_X$ and $f \circ g \simeq 1_Y$. Two spaces X and Y have the same homotopy type if there is a homotopy equivalence $f: X \to Y$

Hatcher:

A map $f: X \to Y$ is called a *homotopy equivalence* if there is a map $g: Y \to X$ such that $fg \simeq 1$ and $gf \simeq 1$. The spaces X and Y are said to be homotopy equivalent or to have the same <u>homotopy type</u>.

 $\#Algebraic_Topology$

to S^5 . Compute $H_n(X)$ for all n.

By

Same Homotopy Type Implies Same Homology

Rotman Corollary 4.24:

If X and Y have the same homotopy type, then $H_n(X) \cong H_n(Y)$ for all $n \geq 0$, where the isomorphism is induced by any homotopy equivalence.

Hatcher Corollary 2.11:

The maps $f_*: H_n(X) \to H_n(Y)$ induced by a homotopy equivalence $f: X \to Y$ are isomorphisms for all n.

 $\#Algebraic_Topology$

we have that

$$H_k(X/A) \cong H_k(S^5)$$
 and $H_k(A) \cong H_k(S^3)$

By

Sn Homology Groups

Homology Groups

If n > 0

$$H_k(S^n) \cong egin{cases} \mathbb{Z} & ext{if } k=0,n \ 0 & ext{otherwise} \end{cases}$$

If n = 0

$$H_k(S^n)\cong egin{cases} \mathbb{Z}\oplus\mathbb{Z} & ext{if } k=0 \ 0 & ext{otherwise} \end{cases}$$

Reduced Homology Groups

$$ilde{H}_k(S^n)\congegin{cases} \mathbb{Z} & ext{if } k=n \ 0 & ext{otherwise} \end{cases}$$

Calculation

#Algebraic_Topology

we have

$$H_k(A)\cong H_k(S^3)\cong egin{cases} \mathbb{Z} & ext{if } k=0,3 \ 0 & ext{otherwise} \end{cases}$$

Bv

Sn Homology Groups

Homology Groups

If n > 0

$$H_k(S^n)\congegin{cases} \mathbb{Z} & ext{if } k=0,n \ 0 & ext{otherwise} \end{cases}$$

If n = 0

$$H_k(S^n)\congegin{cases} \mathbb{Z}\oplus\mathbb{Z} & ext{if } k=0\ 0 & ext{otherwise} \end{cases}$$

Reduced Homology Groups

$$ilde{H}_k(S^n) \cong egin{cases} \mathbb{Z} & ext{if } k=n \ 0 & ext{otherwise} \end{cases}$$

Calculation

 $\#Algebraic_Topology$

we have

$$ilde{H}(X/A)\cong ilde{H}_k(S^5)\cong egin{cases} \mathbb{Z} & ext{if } k=5 \ 0 & ext{otherwise} \end{cases}$$

By

Relative Homology vs Homology of Quotient

Rotman: Theorem 8.41

Let (X, E) be a CW complex with CW subcomplex (Y, E'). Then the natural map $\nu : X \to X/Y$ induces isomorphisms for every $k \ge 0$

$$u_*: H_k(X,Y) \cong H_k(X/Y,*) \cong \tilde{H}_k(X/Y)$$

where * denotes the singleton point $\nu(Y)$ in X/Y

Hatcher: Proposition 2.22

For good pairs (X, A), the quotient map $q: (X, A) \to (X/A, A/A)$ induces isomorphisms $q_*: H_n(X, A) \to H_n(X/A, A/A) \cong \tilde{H}_n(X/A)$ for all n

 $\#Algebraic_Topology$

we have

$$ilde{H}_k(X/A)\cong H_k(X,A)$$

Ву

Exact Sequence of the Pair

Rotman: Theorem 5.8

If A is a subspace of X, there is an exact sequence

$$\cdots
ightarrow H_n(A)
ightarrow H_n(X)
ightarrow H_n(X,A) \stackrel{d}{
ightarrow} H_{n-1}(A)
ightarrow \ldots$$

**Hatcher:

Theorem 2.13. If X is a space and A is a nonempty closed subspace that is a deformation retract of some neighborhood in X, then there is an exact sequence

$$\cdots \longrightarrow \widetilde{H}_n(A) \xrightarrow{i_*} \widetilde{H}_n(X) \xrightarrow{j_*} \widetilde{H}_n(X/A) \xrightarrow{\partial} \widetilde{H}_{n-1}(A) \xrightarrow{i_*} \widetilde{H}_{n-1}(X) \longrightarrow \cdots$$

$$\cdots \longrightarrow \widetilde{H}_n(X/A) \longrightarrow 0$$

where i is the inclusion $A \hookrightarrow X$ and j is the quotient map $X \rightarrow X/A$.

#Algebraic_Topology

we can start diagram chasing by plugging in our above homology values to obtain

$$\cdots
ightarrow H_5(A) \stackrel{0}{
ightarrow}
ightarrow H_5(X)
ightarrow H_5(X/A) \cong H_5(X/A) \cong H_5(X,A) \stackrel{0}{
ightarrow} \cdots$$

So by

Flanking Zeros of Exact Sequence

Rotman: Exercise 5.1 (iv)

If $0 \to A \to 0$ is exact, then A = 0

#Algebraic_Topology

we have that $H_5(X) \cong \mathbb{Z}$

Then

$$\cdots \rightarrow H_b(X,A)^0 \rightarrow H_3(A)^\mathbb{Z} \rightarrow H_3(X) \rightarrow H_3(X,A)^0 \ldots$$

and by

Sandwiched Zeros of Exact Sequence

Rotman: Exercise 5.1 (iii)

If $0 \to A \overset{f}{\to} B \to 0$ is exact, then f is an isomorphism. Hence $A \cong B$

#Algebraic_Topology

we have that $H_3(X) \cong \mathbb{Z}$

Lastly

$$\cdots
ightarrow \underbrace{H_0(X,A)}^0
ightarrow \underbrace{H_0(X)}^\mathbb{Z}
ightarrow H_0(X)
ightarrow H_0(X,A) \cong \underbrace{\tilde{H}_0(X/A)}^0 \ldots$$

So again by

Sandwiched Zeros of Exact Sequence

Rotman: Exercise 5.1 (iii)

If $0 \to A \stackrel{f}{\to} B \to 0$ is exact, then f is an isomorphism. Hence $A \cong B$

#Algebraic_Topology

we have $H_0(X) \cong \mathbb{Z}$

Everywhere else $H_k(X)$ is trivial.

3c

Give an example of a topological space X whose reduced homology groups are $\tilde{H}_5(X)\cong \mathbb{Z}, \tilde{H}_2(X)=\mathbb{Z}/2\mathbb{Z}, \tilde{H}_n(X)$ for $n\neq 2,5$

proof:

We have from

 $\ensuremath{\mathsf{RP2}}$ Homology Groups

Homology Groups

$$H_n(\mathbb{R}P^2) = egin{cases} \mathbb{Z}, & ext{n=0} \ \mathbb{Z}/2\mathbb{Z}, & ext{n=1} \ 0, & ext{otherwise} \end{cases}$$

Reduced Homology Groups

$$ilde{H}_n(\mathbb{R}P^2) = egin{cases} \mathbb{Z}/2\mathbb{Z} & ext{n=1} \ 0 & ext{otherwise} \end{cases}$$

Calculation

#Algebraic_Topology

$$ilde{H}_n(\mathbb{R}P^2) = egin{cases} \mathbb{Z}/2\mathbb{Z} & ext{n=1} \ 0 & ext{otherwise} \end{cases}$$

And from

Sn Homology Groups

Homology Groups

If n > 0

$$H_k(S^n) \cong egin{cases} \mathbb{Z} & ext{if } k=0,n \ 0 & ext{otherwise} \end{cases}$$

If n = 0

$$H_k(S^n)\congegin{cases} \mathbb{Z}\oplus\mathbb{Z} & ext{if } k=0\ 0 & ext{otherwise} \end{cases}$$

Reduced Homology Groups

$$ilde{H}_k(S^n)\congegin{cases} \mathbb{Z} & ext{if } k=n \ 0 & ext{otherwise} \end{cases}$$

Calculation

#Algebraic_Topology

$$ilde{H}_k(S^5)\congegin{cases} \mathbb{Z} & ext{if } k=5 \ 0 & ext{otherwise} \end{cases}$$

Then from

Reduced Homology of Suspension

Hatcher Ch.2 Ex.32:

For SX the <u>suspension</u> of X, $\tilde{H}_n(X) \cong \tilde{H}_{n+1}(SX)$ for all n

#Algebraic_Topology

$$ilde{H}_n(X)\cong ilde{H}_{n+1}(SX)$$

So

$$ilde{H}_n(S(\mathbb{R}P^2)\congegin{cases} \mathbb{Z}/2\mathbb{Z} & ext{if } n=2\ 0 & ext{otherwise} \end{cases}$$

Lastly if we choose good pairs for our space $X = S^5 \vee S(\mathbb{R}P^2)$ then from Reduced Homology of Wedge Sum

Hatcher Ch.2 Ex. 31

If the basepoints of X and Y that are identified in $X \vee Y$ are <u>Deformation Retracts</u> of neighborhoods $U \subset X$ and $V \subset Y$ then

$$ilde{H}_n(Xee Y)\cong ilde{H}_n(X)\oplus ilde{H}_n(Y)$$

Julian Take-home:

if (X, x) and (Y, y) are both good pairs, then

$$ilde{H}_n(Xee Y)\simeq ilde{H}_n(X)\oplus ilde{H}_n(Y)$$

Proof

Can be shown by mayer-vietoris

 $\#Algebraic_Topology$

we obtain

$$ilde{H}_n(X) = egin{cases} \mathbb{Z}/2\mathbb{Z} & ext{if } n=2 \ \mathbb{Z} & ext{if } n=5 \ 0 & ext{otherwise} \end{cases}$$

Problem 4

Let G be a topological group. This means G is a group which is also equipped with a topology such that the multiplication map $G \times G \to G, (g,h) \mapsto g \cdot h$ and inversion map $G \to G, g \mapsto g^{-1}$ are both continuous. Assuming that G is connected, prove that the fundamental group of G is abelian.

?