Fall 2023 Solutions

Problem 3

Let X be a manifold with $\pi_2(X,x) = 0$ for all $x \in X$. Is it necessarily the case that $H_2(X) = 0$ as well?

proof:

The torus T^2 is a manifold.

We know from

Torus Homology Groups

Homology

$$H_n(T^2) = egin{cases} \mathbb{Z}, & ext{if } n=0,2 \ \mathbb{Z}^2, & ext{if } n=1 \ 0, & ext{otherwise} \end{cases}$$

Reduced Homology

$$ilde{H}_n(T^2) = egin{cases} \mathbb{Z}, & ext{if } n=2 \ \mathbb{Z}^2, & ext{if } n=1 \ 0, & ext{otherwise} \end{cases}$$

#Algebraic_Topology

$$H_n(T^2) = egin{cases} \mathbb{Z}, & ext{if } n=0,2 \ \mathbb{Z}^2, & ext{if } n=1 \ 0, & ext{otherwise} \end{cases}$$

By

Covering Space Homotopy Group Isomorphism

Rotman Theorem 11.29

If (\tilde{X}, p) is a covering space of X, then

$$p_*:\pi_n(ilde{X}) o\pi_n(X)$$

is an isomorphism for all $n \geq 2$.

In other words $\pi_n(\tilde{X}) \cong \pi_n(X)$ for all $n \geq 2$.

 $\#Algebraic_Topology$

we have that if (\tilde{X}, p) is a covering space of X then

$$\pi_n(ilde{X})\cong\pi_n(X)\quad ext{for }n\geq 2$$

We know that $T^2 = S^1 \times S^1$

 $\mathbb R$ is a universal cover of S^1

Thus $S^1 \times S^1$ has \mathbb{R}^2 as a universal cover

Bv

Contractible Space Has Trivial Homotopy Groups

Rotman 11.28

If X is contractible, then $\pi_n(X, x_0) = 0$ for all $n \geq 0$.

#Algebraic_Topology

, since \mathbb{R}^2 is contractible, $\pi_n(\mathbb{R}^2) = 0$ for all $n \geq 2$

Thus $\pi_n(T^2) \cong \pi_n(\mathbb{R}^2) = 0$ for all $n \geq 2$ and we have that $\pi_2(T^2, x) = 0$ for all $x \in T^2$, but $H_2(T^2; \mathbb{Z}) = \mathbb{Z}$.

Approach 2 (Direct Sum Isomorphism)

proof:

The torus T^2 is a manifold.

We know that

$$H_n(T^2) = egin{cases} \mathbb{Z}, & ext{if } n=0,2 \ \mathbb{Z}^2, & ext{if } n=1 \ 0, & ext{otherwise} \end{cases}$$

Since $T^2 = S^1 \times S^1$ then we have by

Homotopy Groups of Cartesian Product of Spaces isomorphic to Direct Product of Homotopy Groups of Spaces

Rotman Exercise 11.24

If X and Y are pointed spaces, then, for all $n \geq 2$,

$$\pi_n(X imes Y)\cong \pi_n(X)\oplus \pi_n(Y)$$

#Algebraic_Topology

, that

$$\pi_n(T^2) \cong \pi_n(S^1 \times S^1) \cong \pi_n(S^1) \oplus \pi_n(S^1) \cong 0 \quad \text{for } n > 1$$

Thus $H_2(T^2; \mathbb{Z}) \cong \mathbb{Z}$ when $\pi_2(T^2) \cong 0$.

Problem 4

What are the integral homology groups of $S^1 \vee S^2 \vee S^3 \vee S^4$

Ву

Reduced Homology of Wedge Sum

Hatcher Ch.2 Ex. 31

If the basepoints of X and Y that are identified in $X \vee Y$ are <u>Deformation Retracts</u> of neighborhoods $U \subset X$ and $V \subset Y$ then

$$ilde{H}_n(Xee Y)\cong ilde{H}_n(X)\oplus ilde{H}_n(Y)$$

Julian Take-home:

if (X, x) and (Y, y) are both good pairs, then

$$ilde{H}_n(Xee Y)\simeq ilde{H}_n(X)\oplus ilde{H}_n(Y)$$

Proof

Can be shown by mayer-vietoris

 $\#Algebraic_Topology$

we have

$$H_n(S^1 ee S^2 ee S^3 ee S^4) \cong egin{cases} \mathbb{Z} & n=0,1,2,3,4 \ 0 & ext{else} \end{cases}$$

Problem 6

Give an example of a

Covering Space

Rotman: p.273

If X is a topological space, then an ordered pair (\tilde{X}, p) is a covering space of X if:

- 1) \tilde{X} is a path connected topological space
- 2) $p: \tilde{X} \to X$ is continuous
- 3) each $x \in X$ has an open neighborhood $U = U_x$ that is <u>evenly covered</u> by p.

Hatcher: p.56

A covering space of a space X is a space \tilde{X} together with a map $p: \tilde{X} \to X$ satisfying the following condition: Each point $x \in X$ has an open neighborhood U in X such that $p^{-1}(U)$ is a union of disjoint open sets in \tilde{X} , each of which is mapped homeomorphically onto U by p. Such a U is called Evenly Covered and the disjoint open sets in \tilde{X} that project homeomorphically to U by p are called Sheets of \tilde{X} over U.

 $\#Algebraic_Topology$

 $X \to Y$ which is not a

Regular Covering Space

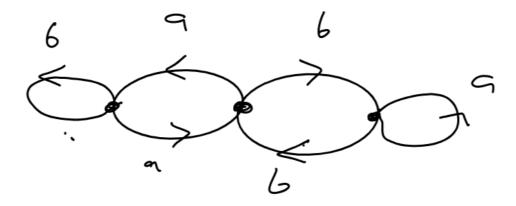
Rotman p.283

A covering space (\tilde{X}, p) of X is regular if $p_*\pi_1(\tilde{X}, \tilde{x}_0)$ is a normal subgroup of $\pi_1(X, x_0)$ for every $x_0 \in X$ #Algebraic_Topology

proof:

!

Take $Y = S^1 \vee S^1$ with fundamental group $\langle a,b \rangle$ and let the covering space X be the picture below



Which has fundamental group $\langle a^2, b^2, aba^{-1}, bab^{-1} \rangle$. Then it is not a regular covering space, since this subgroup does not contain the element

$$a \ aba^{-1} \ a^{-1} = a^2ba^{-2}$$

Problem 7

Show that the Cantor set does not admit a CW complex structure

Don't think this would show up on an exam.

Cantor sect is compact with infinitely many connected components, compact CW spaces can only have finitely many.

Mariano: This is still a good example for the homotopy-equivalence question: If $f:C\to X$ is a h.e. from the Cantor set to a CW-complex, then f(C) has to have nonempty intersection with each component of X and there has to be continuum of such components. Since each component of X is open, we obtain an open covering of C by continuum of disjoint nonempty open sets, which is, of course, impossible. – Moishe Kohan Oct 12, 2013 at 11:49