2017, Fall

Problem 1.

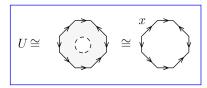
Since M is compact and f is continuous, $\operatorname{im}(f)$ is compact, and in particular not all of \mathbb{R}^m . So f isn't surjective, and $\operatorname{deg}(f) = 0$. Let $y \in \mathbb{R}^m$ be a regular value of f; by Sard, such points have full measure in \mathbb{R}^m . We have

$$0=\deg(f)=\sum_{x\in f^{-1}(y)}\deg_x(f).$$

But each local degree $\deg_x(f) = \pm 1$, so to obtain 0 on the left-hand side, there must be an even number of points belonging to $f^{-1}(y)$.

Problem 2.

Let X be the given quotient space, and write X as the union of the subspaces U and V shown below, with $U \cap V \cong S^1$.



Let $x \in \pi_1(U)$ correspond to the edge above as labeled. Observe that $\pi_1(V) \cong 1$ since V is contractible, and that $\pi_1(U) \cong \mathbb{Z}$, generated by the single element x. Letting $i: U \cap V \hookrightarrow U$ and $j: U \cap V \hookrightarrow V$ be the canonical inclusions, then the induced homomorphism $i_*: \pi_1(U \cap V) \to \pi_1(U)$ maps the single generator $1 \in \pi_1(U \cap V) \cong \pi_1(\mathsf{S}^1) \cong \mathbb{Z}$ to $i_*(1) = xxx^{-1}x^{-1}x^{-1}x^{-1}x^{-1} = x^{-2}$, and $j_*: \pi_1(U \cap V) \to \pi_1(V)$ maps it to $j_*(1) = 1$ by triviality of $\pi_1(V)$. So by van Kampen,

$$\pi_1(X) \cong \pi_1(U) *_{\pi_1(U \cap V)} \pi_1(V) \cong \frac{\langle x \rangle}{\langle x^{-2} \rangle} = \langle x \mid x^{-2} = 1 \rangle = \langle x \mid x^2 = 1 \rangle \cong \mathbb{Z}_2.$$

Problem 3.

• Letting $\text{Bij}(p^{-1}(x_0))$ denote the set of bijections $p^{-1}(x_0) \to p^{-1}(x_0)$, we have an assignment

$$F:\pi_1(X,x_0)\to \mathrm{Bij}(p^{-1}(x_0)),\quad F_{[\gamma]}(\tilde{x}):=\tilde{\gamma}_{\tilde{x}}(1),$$

where $\tilde{\gamma}_{\tilde{x}}:[0,1]\to \tilde{X}$ is the unique lift of γ satisfying $\tilde{\gamma}_{\tilde{x}}(0)=\tilde{x}$. This assignment is precisely the monodromy action of $\pi_1(X,x_0)$ on $p^{-1}(x_0)$, and as such, for any $[\gamma]\in\pi_1(X,x_0)$, the order of $F_{[\gamma]}$ must divide $|\pi_1(X,x_0)|=|\mathbb{Z}_5|=5$.

• Suppose the cover p is nontrivial. Then there's some $[\gamma] \in \pi_1(X, x_0)$ such that the order of $F_{[\gamma]}$ is not 1. Then by the above, this order must be 5. As such, $F_{[\gamma]}$ is a permutation of 5 distinct elements of $p^{-1}(x_0)$ belonging to a single connected component of \tilde{X} . But $|p^{-1}(x_0)| = 4$, so this is impossible.

Problem 4.

Background. A contact manifold is a pair (M^{2m+1}, ξ) consisting of an odd-dimensional manifold M together with a "maximally nonintegrable" field of hyperplanes $\{\xi_x \subset \mathsf{T}_x M\}_{x \in M}$, that is, a rank-2m distribution ξ on M which is the kernel of some 1-form $\alpha \in \Omega^1(M)$, called a contact form, satisfying $\alpha \wedge (\mathsf{d}\alpha)^{\wedge m} \neq 0$ at each point of M. In this problem we show that $(\mathbb{R}^3, \mathscr{D})$ is a contact manifold.

No. It's enough to show that \mathscr{D} is nonintegrable at $0 \in \mathbb{R}^3$. Let $\alpha := 2dx - e^y dz$, so that $\mathscr{D} = \ker(\alpha)$. It's a basic fact from contact geometry that \mathscr{D} is nowhere integrable if $\alpha \wedge (d\alpha) \neq 0$ at every point of \mathbb{R}^3 . Indeed,

$$\alpha \wedge (\mathsf{d}\alpha) = (2\mathsf{d}x - e^y \mathsf{d}z) \wedge (-e^y \mathsf{d}y \wedge \mathsf{d}z) = -2e^y \mathsf{d}x \wedge \mathsf{d}y \wedge \mathsf{d}z$$

is nonzero at every point of \mathbb{R}^3 , and in particular at 0.

Problem 5.

Suppose M is a submanifold of \mathbb{R}^4 , and observe that $M = f^{-1}(0)$ where $f : \mathbb{R}^4 \to \mathbb{R}$ is the map given by $f(x_1, x_2, x_3, x_4) := x_1^2 + x_2^2 - x_3^2 - x_4^2$. Consider the tangent spaces of M at two of its points, 0 and (1, 0, 1, 0),

$$\begin{split} &\mathsf{T}_0 M = \ker(\mathsf{d} f_0) = \ker\left(2x_1 \quad 2x_2 \quad 2x_3 \quad 2x_4\right)\big|_0 = \ker(0) = \mathsf{T}_0\mathbb{R}^4, \\ &\mathsf{T}_{(1,0,1,0)} M = \ker(\mathsf{d} f_{(1,0,1,0)}) = \ker\left(2x_1 \quad 2x_2 \quad 2x_3 \quad 2x_4\right)\big|_{(1,0,1,0)} = \ker\left(2 \quad 0 \quad -2 \quad 0\right) \\ &= \{(v_1,v_2,v_3,v_4) \in \mathsf{T}_{(1,0,1,0)}\mathbb{R}^4 \mid 2v_1 - 2v_3 = 0\}. \end{split}$$

Then $\dim_{\mathbb{R}}(\mathsf{T}_0M)=4$ but $\dim_{\mathbb{R}}(\mathsf{T}_{(1,0,1,0)}M)=3$, which is impossible.

Problem 6.

Let U and V be the cylinders along the z- and y-axes, respectively. Then $U \cap V \cong \mathsf{S}^1 \coprod \mathsf{S}^1$, so we have

$$\mathsf{H}_j(U) \cong \mathsf{H}_j(V) \cong \begin{cases} \mathbb{Z} & j = 0, 1, \\ 0 & \text{else}, \end{cases}, \quad \mathsf{H}_j(U \cap V) \cong \begin{cases} \mathbb{Z}^{\oplus 2} & j = 0, 1, \\ 0 & \text{else}. \end{cases}$$

By path connectedness, we already have $H_0(X) \cong \mathbb{Z}$. Then by Mayer-Vietoris, the sequence

$$0 \longrightarrow \mathsf{H}_2(X) \xrightarrow{\ \partial_2 \ } \mathbb{Z}^{\oplus 2} \xrightarrow{(i_1,j_1)} \mathbb{Z}^{\oplus 2} \xrightarrow{k_1-\ell_1} \mathsf{H}_1(X) \xrightarrow{\ \partial_1 \ } \mathbb{Z}^{\oplus 2} \xrightarrow{(i_0,j_0)} \mathbb{Z}^{\oplus 2}$$

is exact.

- By exactness, $\ker(\partial_2) \cong 0$. Now consider the inclusions $i: U \cap V \hookrightarrow U$ and $j: U \cap V \hookrightarrow V$. The two loops x,y generating $\mathsf{H}_1(U \cap V)$ are mapped under i into contractible portions of the wall of the cylinder U, and so $i_1(x) = i_1(y) = 0$. On the other hand, j sends these two loops to the (same) single loop which generates $\mathsf{H}_1(V)$, and so $j_1(x) = j_1(y) = 1$. Thus $\mathsf{im}(\partial_2) \cong \mathsf{ker}(i_1,j_1) \cong \mathbb{Z}$, and so $\mathsf{H}_2(X) \cong \mathbb{Z}$.
- By the above, $\ker(k_1 \ell_1) \cong \operatorname{im}(i_1, j_1) \cong \mathbb{Z}$, and so $\ker(\partial_1) \cong \operatorname{im}(k_1 \ell_1) \cong \mathbb{Z}$. Next observe that the two connected components which together generate $H_0(U \cap V)$ are mapped by i to the (same) single connected component of U which generates $H_0(U)$. A similar statement holds for j, whereby $\operatorname{im}(i_0, j_0) \cong \mathbb{Z}$ and $\operatorname{im}(\partial_1) \cong \ker(i_0, j_0) \cong \mathbb{Z}$. Thus $H_1(X) \cong \mathbb{Z}^{\oplus 2}$.

Hence
$$\mathsf{H}_j(X)\cong egin{cases} \mathbb{Z} & j=0,\\ \mathbb{Z}^{\oplus 2} & j=1,\\ \mathbb{Z} & j=2,\\ 0 & \text{else}. \end{cases}$$

Problem 7.

This is very similar to problem 5 of 2010, Fall, and problem 5 of 2008, Spring.