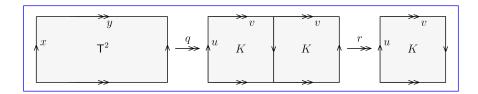
2015, Fall

Problem 1.

- (a) A homotopy between two continuous maps $f, g: X \to Y$ of topological spaces is a continuous map $h: X \times [0,1] \to Y$ with $h(\cdot,0) = f$ and $h(\cdot,1) = g$. In this case, f and g are said to be homotopic.
 - Two topological spaces X, Y are said to be homotopy equivalent if there exists a pair of continuous maps $f: X \to Y$ and $g: Y \to X$ such that $g \circ f$ is homotopic to id_X , and $f \circ g$ is homotopic to id_Y . In this case, f and g are called homotopy equivalences between X and Y.
- (b) The closed disc B^2 is homotopy equivalent to a point * (since it's contractible), but B^2 and * aren't homeomorphic since any map $B^2 \to *$ is noninjective.
- (c) Both the sphere S^2 and the point * have trivial fundamental group, but aren't homotopy equivalent since * is contractible while S^2 isn't.
- (d) The torus T^2 and the wedge of two circles $\mathsf{S}^1 \vee \mathsf{S}^1$ both have first homology group isomorphic to $\mathbb{Z}^{\oplus 2}$, but the fundamental group of T^2 is the abelian group $\mathbb{Z}^{\oplus 2}$ while that of $\mathsf{S}^1 \vee \mathsf{S}^1$ is the nonabelian free group F_2 .

Problem 2.

(a) Let $p: \mathsf{T}^2 \twoheadrightarrow K$ be the composite of the quotient map q from T^2 to two Klein bottles K glued to one another as shown, followed by a projection r from this space onto a single copy of K.



This is the desired cover.

(b) Let $x, y \in \pi_1(\mathsf{T}^2)$ and $u, v \in \pi_1(K)$ be loops in T^2 and K, respectively, corresponding to the edges above as labeled. We see that

$$\pi_1(\mathsf{T}^2) \cong \langle x, y \mid xyx^{-1}y^{-1} = 1 \rangle, \quad \pi_1(K) \cong \langle u, v \mid uvuv^{-1} = 1 \rangle.$$

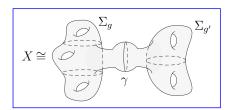
Moreover, by the diagram, $p_*(x) = u$ and $p_*(y) = r_*(q_*(y)) = r_*(2v) = 2r_*(v) = 2v$.

Problem 3.

(a) Recall first that

$$\pi_1(\Sigma_g) \cong \left\langle x_i, y_i, 1 \le i \le g \middle| \prod_{i=1}^g [x_i, y_i] = 1 \right\rangle, \quad \pi_1(\Sigma_{g'}) \cong \left\langle u_j, v_j, 1 \le i \le g' \middle| \prod_{j=1}^{g'} [u_j, v_j] = 1 \right\rangle.$$

Within X, the copies of Σ_g and $\Sigma_{g'}$ intersect along the circular curve $\gamma = \gamma'$.



The inclusion $\gamma \hookrightarrow \Sigma_g$ induces the trivial homomorphism $\pi_1(\gamma) \to \pi_1(\Sigma_g)$ since, in Σ_g , the curve γ forms the boundary of an embedded (contractible) disc. By similar reasoning the inclusion $\gamma \hookrightarrow \Sigma_{g'}$ induces the trivial homomorphism $\pi_1(\gamma) \to \pi_1(\Sigma_{g'})$ as well, so by van Kampen

$$\pi_1(X) \cong \pi_1(\Sigma_g) * \pi_1(\Sigma_{g'}) \cong \left\langle x_i, y_i, u_j, v_j, 1 \le i \le g, 1 \le j \le g' \middle| \prod_{i=1}^g [x_i, y_i] = \prod_{j=1}^{g'} [u_j, v_j] = 1 \right\rangle.$$

(b) We already have by path connectedness that $H_0(X) \cong \mathbb{Z}$, and by Hurewicz that

$$\mathsf{H}_1(X) \cong \pi_1(X)/[\pi_1(X), \pi_1(X)] \cong \mathbb{Z}^{\oplus 2g} \oplus \mathbb{Z}^{\oplus 2g'} \cong \mathbb{Z}^{\oplus 2(g+g')}.$$

Letting U and V be, respectively, Σ_g and $\Sigma_{g'}$ extended slightly beyond γ within X, then $U \cong \Sigma_g, V \cong \Sigma_{g'}$, and $U \cap V \cong \mathsf{S}^1$. For any $j \geq 2$, Mayer-Vietoris immediately yields $\mathsf{H}_j(X) \cong 0$. We further have by Mayer-Vietoris the exact sequence

$$0 \longrightarrow \mathbb{Z}^{\oplus 2} \stackrel{f}{\longrightarrow} \mathsf{H}_2(X) \stackrel{\partial}{\longrightarrow} \mathbb{Z} \stackrel{\iota}{\longrightarrow} \mathbb{Z}^{\oplus 2(g+g')}.$$

By exactness, f is injective, whereby $\ker(\partial) \cong \operatorname{im}(f) \cong \mathbb{Z}^{\oplus 2}$. Moreover, as observed before, the map ι induced by the inclusions of γ into Σ_g and $\Sigma_{g'}$ is trivial, and so $\operatorname{im}(\partial) \cong \ker(\iota) \cong \mathbb{Z}$. Thus $\operatorname{H}_2(X) \cong \mathbb{Z}^{\oplus 3}$, and in summary

$$\mathsf{H}_{j}(X) \cong \begin{cases} \mathbb{Z} & j = 0, \\ \mathbb{Z}^{\oplus 2(g+g')} & j = 1, \\ \mathbb{Z}^{\oplus 3} & j = 2, \\ 0 & \text{else.} \end{cases}$$

(c) No. We have $\mathsf{H}_2(\Sigma_g \times \Sigma_{g'}) \cong \mathsf{H}_2(\Sigma_g) \oplus \mathsf{H}_2(\Sigma_{g'}) \cong \mathbb{Z}^{\oplus 2}$, but we just showed that $\mathsf{H}_2(X) \cong \mathbb{Z}^{\oplus 3}$. Therefore $\Sigma_g \times \Sigma_{g'}$ and X can't be homotopy equivalent.

Problem 4.

Assume $d\omega \neq 0$. Then there's a point $x \in M$ at which $d\omega_x \neq 0$. Let $U \subset M$ be a neighborhood of x homeomorphic to $\mathsf{B}^n \subset \mathbb{R}^n$ via some coordinate chart $\phi: U \to \mathsf{B}^n$ with local U-coordinates y_1, \ldots, y_n . Then on U, we may write $d\omega$ in the local form $d\omega = f dy_1 \wedge \ldots \wedge dy_n$, for some

 $f \in \mathsf{C}^\infty(U)$. Since f(x) is nonzero, say w.l.o.g. f(x) > 0, then also w.l.o.g. U was chosen small enough so that f > 0 on all of U by continuity of f. Then

$$\int_{U} d\omega = \int_{\mathbb{B}^{n}} (\phi^{-1})^{*}(d\omega) = \int_{\mathbb{B}^{n}} \underbrace{(f \circ \phi^{-1})}_{>0} dz_{1} \wedge \ldots \wedge dz_{n} > 0,$$

where $z_j =: \phi^* y_j$ is the B^n -coordinate corresponding to y_j , for each $1 \leq j \leq n$. But on the other hand, $\partial U \subset M$ is an oriented closed submanifold since it's homeomorphic to $\partial \mathsf{B}^n = \mathsf{S}^{n-1}$ via ϕ , so by Stokes and the problem assumption, $\int_U \mathsf{d}\omega = \int_{\partial U} \omega = 0$, a contradiction.

Problem 5 (?).

By Frobenius, it's enough to verify that [v, w] = 0. Now,

$$vw = \left(\frac{\partial}{\partial x} + xz\frac{\partial}{\partial z}\right) \left(\frac{\partial}{\partial y} + yz\frac{\partial}{\partial z}\right) = \frac{\partial^2}{\partial x\partial y} + xz\frac{\partial^2}{\partial y\partial z} + 0 + yz\frac{\partial^2}{\partial x\partial z} + xyz\frac{\partial}{\partial z} + xyz^2\frac{\partial^2}{\partial z^2},$$

$$wv = \left(\frac{\partial}{\partial y} + yz\frac{\partial}{\partial z}\right) \left(\frac{\partial}{\partial x} + xz\frac{\partial}{\partial z}\right) = \frac{\partial^2}{\partial x\partial y} + yz\frac{\partial^2}{\partial x\partial z} + 0 + xz\frac{\partial^2}{\partial y\partial z} + xyz\frac{\partial}{\partial z} + xyz^2\frac{\partial^2}{\partial z^2},$$

whereby [v, w] = vw - wv = 0.

Problem 6.

Remark. In this problem, we use $\mathbb{C} \cup \{\infty\}$ and S^2 interchangeably by implicitly making use of the given homeomorphism. Note also that if $f:\mathbb{C} \to \mathbb{C}$ is a constant polynomial, then it trivially extends to S^2 , and this extension has topological degree 0, which is the same as the algebraic degree of f. So we'll also assume w.l.o.g. that f is nonconstant.

(a) Define $\bar{f}: \mathsf{S}^2 \to \mathsf{S}^2$ by setting $\bar{f}|_{\mathbb{C}} := f$ and $\bar{f}(\infty) := \infty$. Clearly \bar{f} is continuous on \mathbb{C} , so it remains to check continuity at ∞ . Indeed, if $\{z_j\}_{j=1}^{\infty} \subset \mathsf{S}^2$ is a sequence converging to ∞ , then

$$\lim_{j \to \infty} \bar{f}(z_j) = \lim_{j \to \infty} f(z_j) = \infty = \bar{f}(\infty),$$

where we have the third equality, by Liouville, since f is a nonconstant polynomial. \Box

(b) Say $f(z) = a_0 + a_1 z + \dots + a_m z^m$ for all $z \in \mathbb{C}$, where $a_0, \dots, a_m \in \mathbb{C}$ and $a_m \neq 0$. Then the algebraic degree of f is $m \in \mathbb{N}$, and it's enough to show that \bar{f} is homotopic to the map $g: \mathsf{S}^2 \to \mathsf{S}^2$ given by $g(z) := z^m$ for all $z \in \mathsf{S}^2$, since g has homological degree m. We begin with the map

$$h: S^2 \times [0,1] \to S^2, \quad h(z,t) := t(a_0 + a_1 z + \dots + a_{m-1} z^{m-1}) + a_m z^m,$$

with $h_0(z) = a_m z^m$ for all $z \in S^2$, and $h_1 = f$. Obviously h is continuous on $\mathbb{C} \times [0,1]$, so it remains to check that it's also continuous at any point of the form $(\infty, t) \in S^2 \times [0,1]$.

Take any $(\infty,t) \in S^2 \times [0,1]$ and any M>0. We need to check that there's some K>0 large enough and $\delta>0$ small enough so that whenever $(z,s) \in S^2 \times [0,1]$ has |z|>K and $|s-t|<\delta$, then |h(z,s)|>M. But indeed, $|a_mz^m|>|a_0+a_1z+\cdots+a_{m-1}z^{m-1}|$ whenever |z|>K for some large K>0, and so choosing this value of K together with $\delta:=1$ proves the desired continuity. Therefore h is a homotopy between f and h_0 . Similarly, we can check that the map

$$k: \mathsf{S}^2 \times [0,1], \quad k(z,t) := a_m^t z^m$$

is a homotopy between h_0 and g, and this completes the proof.