2014, Fall

Problem 1.

Let $p: (\tilde{X}, \tilde{x}) \to (X, x)$ be the (compact) universal cover of X, where $\tilde{x} \in \tilde{X}$ is some point in the fiber $p^{-1}(x) \subset \tilde{X}$. We have a bijection $\pi_1(X, x) \to p^{-1}(x)$ given by associating to a loop $[f] \in \pi_1(X, x)$ the point $\tilde{f}(1) \in p^{-1}(x)$, where $\tilde{f}: [0, 1] \to \tilde{X}$ is the unique lift (of a representative $f: [0, 1] \to X$) satisfying $\tilde{f}(0) = \tilde{x}$. But $p^{-1}(x)$ is finite since it's a discrete closed subset of the compact space \tilde{X} , and so $\pi_1(X, x)$ must be finite as well.

Problem 2.

We have that

$$\mathsf{H}_{j}(\mathsf{S}^{1}\vee\mathsf{S}^{1}\vee\mathsf{S}^{2})\cong\mathsf{H}_{j}(\mathsf{S}^{1})\oplus\mathsf{H}_{j}(\mathsf{S}^{1})\oplus\mathsf{H}_{j}(\mathsf{S}^{2})\cong \begin{cases} \mathbb{Z} & j=0,\\ \mathbb{Z}^{\oplus 2} & j=1,\\ \mathbb{Z} & j=2,\\ 0 & \text{else} \end{cases}\cong\mathsf{H}_{j}(\mathsf{T}^{2}).$$

Yet, $\pi_1(S^1 \vee S^1 \vee S^2) \cong \mathbb{Z} * \mathbb{Z}$ is nonabelian, while $\pi_1(T^2) \cong \mathbb{Z}^{\oplus 2}$ is abelian, so $S^1 \vee S^1 \vee S^2$ and T^2 can't be homeomorphic.

Problem 3.

Let $a: S^n \to S^n$ be the antipodal map given by a(x) := -x.

(i) Suppose $f: S^n \to S^n$ has no fixed points. Since $S^n \subset \mathbb{R}^{n+1}$, we may use the vector space structure of \mathbb{R}^{n+1} to define a family of maps $\{h_t: S^n \to S^n\}_{0 \le t \le 1}$ by

$$h_t(x) := \frac{(1-t)f(x) - tx}{\|(1-t)f(x) - tx\|}$$

Clearly the denominator is nonzero when t=1 since $x \in S^n$. Now assume that for some $0 \le t_0 < 1$, the denominator is 0; then $f(x) = \frac{t_0}{1-t_0}x$. Since ||x|| = ||f(x)|| = 1, we must have $t_0 = 1/2$. But then f(x) = x, a contradiction. Thus the denominator is always nonzero on S^n , whereby $\{h_t\}_{0 \le t \le 1}$ is a well defined homotopy between $h_0 = f$ and $h_1 = a$.

(ii) With f as above, assume that there are no points $x \in S^{2m}$ such that f(x) = x or f(x) = -x. Then both $-f, f : S^{2m} \to S^{2m}$ are free of fixed points, and so by (a) are homotopic to a. Therefore we have $\deg(f) = \deg(a) = (-1)^{2m+1} = -1$, but on the other hand

$$\deg(f) = \deg(a \circ (-f)) = \deg(a) \deg(-f) = (-1)^{2m+1} \deg(-f) = -\deg(a) = -(-1)^{2m+1} = 1,$$
 a contradiction.

Problem 4.

See problem 5 of 2005, Fall, and problem 4 of 2013, Fall.

Problem 5.

We're given that X is homeomorphic to a genus-g surface, and that $\partial X = \emptyset$. So by Gauss-Bonnet,

$$\iint_X K \mathrm{d}A = 2\pi \chi(X) = 2\pi (2-2g) < 0$$

since g > 1. It follows that K < 0 on a subset $U \subset M$ with nonempty interior. Choosing an interior point $x \in U$ and an open neighborhood $V \subset U$ of x, we have that K < 0 on V.

Problem 6.

Since $\omega \in \Omega^d(M)$ is a volume form, then $d\omega = 0$. Hence by Cartan and Stokes,

$$\int_{M} \mathcal{L}_{X} \omega = \int_{M} (\mathrm{d} \iota_{X} \omega + \iota_{X} \underbrace{\mathrm{d} \omega}_{=0}) = \int_{\partial M} \iota_{X} \omega = 0,$$

because $\partial M = \emptyset$. This implies that $\mathcal{L}_X \omega$ must vanish at some point of M.

Problem 7.

See problem 3 of 2013, Spring, replacing real numbers by complex ones.