2013, Fall

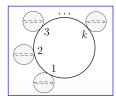
Problem 1.

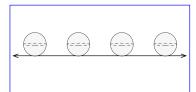
(a) Very similarly to problem 3 of 2006, Spring, we see that $X \cong S^1 \vee S^2$. Thus X is obtained by attaching a 1-cell and a 2-cell to a single 0-cell. It's immediate that

$$\mathsf{H}_j(X) \cong \begin{cases} \mathbb{Z} & j = 0, 1, 2, \\ 0 & \text{else.} \end{cases}$$

(b) By van Kampen, $\pi_1(X) \cong \pi_1(S^1) * \pi_1(S^2) \cong \mathbb{Z} * 1 \cong \mathbb{Z}$.

(c) Equivalence classes of connected covers of X are in bijection with the subgroups of $\pi_1(X) \cong \mathbb{Z}$. Any proper subgroup of \mathbb{Z} is of the form $k\mathbb{Z}$ for some $k \in \mathbb{N}$, and corresponds to the k-sheeted cover below on the left. The identity subgroup corresponds to the universal cover on the right.





Problem 2.

Since $f: M \to N$ is continuous and M is compact, then $\mathsf{im}(f)$ is compact, and in particular closed. Since f is a submersion, then by the implicit function theorem f is locally an open map (a projection), and hence $\mathsf{im}(f)$ is open. But then $\mathsf{im}(f) \subset N$ is a simultaneously closed and open subset of the connected manifold N, and is nonempty since $M \neq \emptyset$. Thus $\mathsf{im}(f) = N$.

Problem 3.

See problem 4 of 2010, Fall.

Problem 4.

Recall that we have canonical isomorphisms $\Omega^{j}(S^{1}) \cong C^{\infty}(S^{1})$ for j = 0, 1.

- We know that S^1 is a 1-manifold, so for all $j \neq 0,1$, we have $\Omega^j(\mathsf{S}^1) = \varnothing$ and hence $\mathsf{H}^j_{\mathsf{dR}}(\mathsf{S}^1) = 0$.
- Thus

$$\mathsf{H}^0_\mathsf{dR}(\mathsf{S}^1) \cong \mathsf{ker}(\mathsf{d}^0) \cong \{f \in \mathsf{C}^\infty(\mathbb{R}) \mid \mathsf{d}f = 0\} \cong \{f \in \mathsf{C}^\infty(\mathbb{R}) \mid f \text{ a constant function}\} \cong \mathbb{R}.$$

• Consider the integration map $I: \Omega^1(S^1) \to \mathbb{R}$ given by $I(\omega) := \int_{S^1} \omega$. Choosing $dt \in \Omega^1(S^1)$ with $\int_{S^1} dt = 2\pi$, then any $c \in \mathbb{R}$ has $c = I((c/2\pi)dt)$, and so $\operatorname{im}(I) = \mathbb{R}$. Moreover it's easily verified that $\ker(I) = \operatorname{im}(d^0)$, and so

$$\mathsf{H}^1_{\mathsf{dR}}(\mathsf{S}^1) = \frac{\mathsf{ker}(\mathsf{d}^1)}{\mathsf{im}(\mathsf{d}^0)} = \frac{\Omega^1(\mathsf{S}^1)}{\mathsf{ker}(I)} \cong \mathsf{im}(I) = \mathbb{R}.$$

Hence
$$\mathsf{H}^j_{\mathsf{dR}}(\mathsf{S}^1) \cong \begin{cases} \mathbb{Z} & j=0,1, \\ 0 & \mathrm{else.} \end{cases}$$

Problem 5.

Background. The quotient Z is called the double mapping cylinder of f and g. In this problem we form a long exact sequence which relates the homologies of the constituent spaces X and Y to the homology of Z.

Let $\iota: X \times \partial[0,1] \hookrightarrow X \times [0,1]$ be the canonical inclusion, and let $q: (X \times [0,1], X \times \partial[0,1]) \to (Z,Y)$ be the restriction of the given quotient map $(X \times [0,1]) \coprod Y \twoheadrightarrow Z$ to the first component. Then the exact sequences for the relative homology of the good pairs $(X \times [0,1], X \times \partial[0,1])$ and (Z,Y) give, for each $j \in \mathbb{Z}$, the commutative diagram with exact rows,

Thus we're done if we can show that $\mathsf{H}_{j+1}(Z,Y) \cong \mathsf{H}_{j}(X)$ for each $j \in \mathbb{Z}$. To see this, fix some $j \in \mathbb{Z}$, and note that

$$\mathsf{H}_j(X \times \partial[0,1]) \cong \mathsf{H}_j\left((X \times \{0\}) \coprod (X \times \{1\})\right) \cong \mathsf{H}_j(X)^{\oplus 2}.$$

Both $X \times \{0\}$ and $X \times \{1\}$ are deformation retracts of $X \times [0,1]$, so ι_* is surjective. Then the outer two maps on the top row are 0, and hence δ is injective. As such,

$$\mathsf{H}_{i+1}(X \times [0,1], X \times \partial [0,1]) \cong \mathsf{im}(\delta) \cong \mathsf{ker}(\iota_*) \cong \{(\omega, -\omega) \mid \omega \in \mathsf{H}_i(X)\} \cong \mathsf{H}_i(X),$$

so it's enough to show $\mathsf{H}_{j+1}(Z,Y) \cong \mathsf{H}_{j+1}(X \times [0,1], X \times \partial [0,1])$. Recall that $(X \times [0,1], X \times \partial [0,1])$ and (Z,Y) are good pairs, and q yields induces a homeomorphism $(X \times [0,1])/(X \times \partial [0,1]) \stackrel{\sim}{\to} Z/Y$. So we may factor the leftmost map q_* as

whereby q_* gives the desired isomorphism $\mathsf{H}_{j+1}(X\times[0,1],X\times\partial[0,1])\stackrel{\sim}{\to}\mathsf{H}_{j+1}(Z,Y)$.

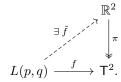
Problem 6.

(a) Observe that \mathbb{Z}_p is a finite group, S^3 is Hausdorff, and the given action of \mathbb{Z}_p on S^3 is free; hence this action is properly discontinuous. Then the canonical quotient map $q:\mathsf{S}^3 \twoheadrightarrow L(p,q)$ is a covering map, and

$$\pi_1(L(p,q)) \cong \pi_1(\mathsf{S}^3/\mathbb{Z}_p) \cong \frac{\pi_1(\mathsf{S}^3/\mathbb{Z}_p)}{q_*(\pi_1(\mathsf{S}^3))} \cong \mathbb{Z}_p,$$

since
$$\pi_1(S^3) \cong 1$$
.

(b) Denote by $\pi: \mathbb{R}^2 \to \mathsf{T}^2$ the universal cover of T^2 , and let $f: L(p,q) \to \mathsf{T}^2$ be a continuous map. We have an induced map $f_*: \pi_1(L(p,q)) \to \pi_1(\mathsf{T}^2)$, which must be trivial as $\pi_1(L(p,q)) \cong \mathbb{Z}_p$ has torsion while $\pi_1(\mathsf{T}^2) \cong \mathbb{Z}^{\oplus 2}$ doesn't. Then since \mathbb{R}^2 is simply connected, we have that $f_*(\pi_1(L(p,q))) \cong 1 \subset \pi_*(\pi_1(\mathbb{R}^2)) \cong 1$, and so there exists a lift



Again since \mathbb{R}^2 is simply connected, we may choose a homotopy $\{h_t : L(p,q) \to \mathbb{R}^2\}_{0 \le t \le 1}$ with $h_0 = \tilde{f}$ and $h_1 = c$ for some constant map $c : L(p,q) \to \mathbb{R}^2$. Then $\{\pi \circ h_t\}_{0 \le t \le 1}$ is a homotopy which has $\pi \circ h_0 = \pi \circ \tilde{f} = f$, and $\pi \circ h_1 = \pi \circ c$ (a constant map).

Problem 7.

• For any $a_1, a_2, a_3 \in \mathbb{R}$, denote by $L_{a_1, a_2, a_3} \subset \mathbb{R}^2$ the line determined by the equation

$$a_1x + a_2y + a_3 = 0,$$

and denote by X the space of all lines in \mathbb{R}^2 . Note that we can't have $a_1 = a_2 = 0$ while $a_3 \neq 0$, and also that $L_{a_1,a_2,a_3} = L_{ca_1,ca_2,ca_3}$ for any $c \in \mathbb{R} \setminus 0$. Thus we have a well defined inclusion map $\iota: X \hookrightarrow \mathbb{R}P^2 \setminus \{[0:0:1]\}$ given by $\iota(L_{a_1,a_2,a_3}) := [a_1:a_2:a_3]$.

- We equip X with the topology induced by this inclusion, whereby X inherits the Hausdorff and second countable properties of \mathbb{RP}^2 . Now set $U_1 := \{[1:a_2:a_3] \in X\}$ and consider the homeomorphism $\phi_1: U_1 \to \mathbb{R}^2$ given by $\phi_1([1:a_2:a_3]) := (a_2,a_3)$. (Indeed $U_1 \subset \mathbb{RP}^2$ is open since its complement $\mathbb{RP}^2 \setminus U_1$ is closed.) Then (U_1,ϕ_1) is a chart for X, and similarly defining $(U_2,\phi_2),(U_3,\phi_3)$, we obtain an atlas $\{(U_j,\phi_j)\}_{j=1}^3$ for X.
- Next, for any $(a_2, a_3) \in \phi_1(U_1 \cap U_2)$, recalling that $a_2 \neq 0$ on U_2 , the transition map

$$\tau := \phi_2 \circ \phi_1^{-1}(a_2,a_3) = \phi_2([1:a_2:a_3]) = \phi_2([1/a_2:1:a_3/a_2]) = (1/a_2,a_3/a_2)$$

is smooth. Similarly the other transition maps are also smooth, so this atlas indeed gives X the structure of 2-manifold.

• Finally observe that, with τ as above,

$$\det(\mathsf{d}\tau_{(a_2,a_3)}) = \begin{vmatrix} \frac{\partial \tau_1}{\partial a_2} & \frac{\partial \tau_1}{\partial a_3} \\ \frac{\partial \tau_2}{\partial a_2} & \frac{\partial \tau_2}{\partial a_3} \end{vmatrix} = \begin{vmatrix} -a_2^{-2} & 0 \\ -a_3a_2^{-2} & a_2^{-1} \end{vmatrix} = -a_2^{-3} < 0.$$

So τ is orientation-reversing, whereby X is unorientable when equipped with this atlas.