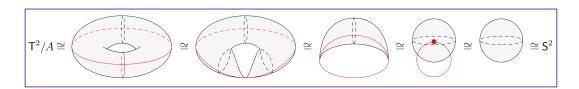
2012, Fall

Problem 1 (?).

Observe that A is the union of a lateral circle and a meridianal one, and that the quotient T^2/A is equivalent to S^2 as shown below.



Hence $H_j(\mathsf{T}^2/A) \cong H_j(\mathsf{S}^2)$. Furthermore, A is a deformation retract of a small thickening of itself within T^2 . So (T^2,A) is a good pair, whereby $\mathsf{H}^j(\mathsf{T}^2,A) \cong \tilde{\mathsf{H}}^j(\mathsf{T}^2/A)$ for each $j \geq 0$.

- By properties of reduced cohomology, $H^0(\mathsf{T}^2,A) \cong \tilde{\mathsf{H}}^0(\mathsf{T}^2/A) \cong \mathsf{Hom}_{\mathbb{Z}}(\tilde{\mathsf{H}}_0(\mathsf{T}^2/A),\mathbb{Z}) \cong 0$, since $\tilde{\mathsf{H}}_0(\mathsf{T}^2/A) \cong 0$ by path connectedness of T^2/A .
- By Poincaré duality, $H^1(\mathsf{T}^2,A) \cong \tilde{\mathsf{H}}^1(\mathsf{T}^2/A) \cong \mathsf{H}_1(\mathsf{T}^2/A) \cong \mathsf{H}_1(\mathsf{S}^2) \cong 0$.
- Similarly, $H^2(\mathsf{T}^2, A) \cong \tilde{\mathsf{H}}^2(\mathsf{T}^2/A) \cong \mathsf{H}_0(\mathsf{T}^2/A) \cong \mathsf{H}_0(\mathsf{S}^2) \cong \mathbb{Z}$.
- And finally, for any $j \geq 3$, we have $\mathsf{H}^j(\mathsf{T}^2,A) \cong \tilde{\mathsf{H}}^j(\mathsf{T}^2/A) \cong \tilde{\mathsf{H}}^j(\mathsf{S}^2) \cong 0$.

In summary,
$$\mathsf{H}^j(\mathsf{T}^2,A)\cong \begin{cases} \mathbb{Z} & j=2,\\ 0 & \mathrm{else.} \end{cases}$$

Problem 2.

Remark. This problem's description contains a mistake; the smash product of two (pointed) spaces X, Y is defined by $X \wedge Y := (X \times Y)/(X \vee Y)$. I'm not sure which "definition" of \wedge this problem uses, so this I'll skip this one.

Problem 3.

(a) Recall that the cellular homology of X agrees with its usual singular homology. Let $(\mathsf{C}_{\bullet}^{\mathsf{CW}}(X), \partial_{\bullet})$ denote the cellular chain complex of X,

$$0 \longrightarrow \mathsf{C}_2^\mathsf{CW}(X) \stackrel{\partial_2}{\longrightarrow} \mathsf{C}_1^\mathsf{CW}(X) \stackrel{\partial_1}{\longrightarrow} \mathsf{C}_0^\mathsf{CW}(X) \stackrel{\partial_0}{\longrightarrow} 0$$

and $\mathsf{H}^{\mathsf{CW}}_{ullet}(X)$ the homology of this complex. Name the 2-cells A,B,C, in the order that they're pictured.

- By path connectedness, we have $H_0^{CW}(X) \cong \mathbb{Z}$.
- We have that $\partial_1(a) = v v = 0$ and $\partial_1(b) = b b = 0$, so $\ker(\partial_1) = \mathbb{Z}\langle a, b \rangle$. Next,

$$\partial_2(A) = a - a = 0, \quad \partial_2(B) = 3b, \quad \partial_2(C) = a + b + a + b = 2(a + b),$$

so $\operatorname{im}(\partial_2) = \mathbb{Z}\langle 2(a+b), 3b \rangle$. Observing that $\mathbb{Z}\langle a, b \rangle = \mathbb{Z}\langle a+b, b \rangle$, we have

$$\mathsf{H}_1^{\mathsf{CW}}(X) = \frac{\ker(\partial_1)}{\mathsf{im}(\partial_2)} = \mathbb{Z}\langle a+b, b \mid 2(a+b) = 3b = 0 \rangle \cong \mathbb{Z}\langle c, b \mid 2c = 3b = 0 \rangle \cong \mathbb{Z}_2 \oplus \mathbb{Z}_3.$$

• By the above, $\mathsf{H}_2^{\mathsf{CW}}(X) \cong \mathsf{ker}(\partial_2) = \mathbb{Z}\langle A \rangle \cong \mathbb{Z}$.

Hence
$$\mathsf{H}_2^\mathsf{CW}(X) \cong \begin{cases} \mathbb{Z} & j = 0, \\ \mathbb{Z}_2 \oplus \mathbb{Z}_3 & j = 1, \\ \mathbb{Z} & j = 2, \\ 0 & \text{else.} \end{cases}$$

(b) Looking at the 2-skeleton of X, we obtain the presentation

$$\pi_1(X) = \langle a, b \mid aa^{-1} = 1, b^3 = 1, abab = 1 \rangle = \langle ab, b \mid b^3 = 1, (ab)^2 = 1 \rangle \cong \langle d, b \mid d^2 = b^3 = 1 \rangle.$$

The right-hand side is isomorphic to the nonabelian free product $\mathbb{Z}_2 * \mathbb{Z}_3$.

Problem 4.

Since any embedding is in particular in immersion, the compact 2-manifold $\mathbb{R}P^2$ can't be embedded into \mathbb{R}^2 by problem 1 of 2012, Spring.

Problem 5.

- Given a vector field $X \in \mathcal{X}(M)$ and a function $f \in \mathsf{C}^\infty(M)$, we obtain a new function $X(f) \in \mathsf{C}^\infty(M)$ given at each point $x \in M$ by $X(f)(x) := X_x(f)$. In this way, we view X as a map $\mathsf{C}^\infty(M) \to \mathsf{C}^\infty(M)$.
- W.r.t. a local coordinate system (x_1, \ldots, x_m) on the m-manifold M, say $X, Y \in \mathfrak{X}(M)$ are written as $X = \sum_{j=1}^m f_j \frac{\partial}{\partial x_j}$ and $Y = \sum_{j=1}^m g_j \frac{\partial}{\partial x_j}$, for some $f_j, g_j \in \mathsf{C}^\infty(M)$, $1 \leq j \leq m$. Then

$$XY = \sum_{1 \le i,j \le m} f_i \frac{\partial g_j}{\partial x_i} \frac{\partial}{\partial x_j} + \sum_{1 \le i,j \le m} f_i g_j \frac{\partial}{\partial x_i x_j}$$

is a second-order operator (and hence not a vector field) if the second sum is nonzero.

· However,

$$[X,Y] = XY - YX = \sum_{1 \le i,j \le m} f_i \frac{\partial g_j}{\partial x_i} \frac{\partial}{\partial x_j} - \sum_{1 \le i,j \le m} g_j \frac{\partial f_i}{\partial x_j} \frac{\partial}{\partial x_i}$$

is a vector field. Here, the second-order differentials appearing in XY and YX have cancelled by symmetry of mixed partial derivatives.

Problem 6.

Note that

$$\int_{\mathsf{S}^3}\omega=\int_{\mathsf{B}^4}\mathsf{d}\omega=\int_{\mathsf{B}^4}(1+2w)\mathsf{d}w\wedge\mathsf{d}x\wedge\mathsf{d}y\wedge\mathsf{d}z=\int_{\mathsf{B}^4}\mathsf{d}w\wedge\mathsf{d}x\wedge\mathsf{d}y\wedge\mathsf{d}z+2\int_{\mathsf{B}^4}w\mathsf{d}w\wedge\mathsf{d}x\wedge\mathsf{d}y\wedge\mathsf{d}z$$

by Stokes. The second integral on the right vanishes since w is an odd function and B^4 is symmetric about 0. Assuming that $dx \wedge dy \wedge dz \wedge dw$ is the canonical volume form on \mathbb{R}^4 , we now have

$$\int_{\mathsf{S}^3} \omega = -\int_{\mathsf{B}^4} \mathsf{d} x \wedge \mathsf{d} y \wedge \mathsf{d} z \wedge \mathsf{d} w = -\mathsf{vol}(\mathsf{B}^4).$$

Problem 7.

See problem 3 of 2008, Fall.