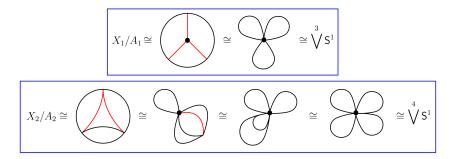
2010, Fall

Problem 1.

If X is a CW complex (for instance, a graph) and $A \subset X$ a contractible subcomplex, then the natural quotient map $X \twoheadrightarrow X/A$ is a homotopy equivalence, whereby $\pi_1(X) \cong \pi_1(X/A)$. We satisfy these assumptions by letting $A_1 \subset X_1$ be the union of the three inner spokes, and $A_2 \subset X_2$ the union of two of the inner segments, as below.



Hence
$$\pi_1(X_1) \cong \pi_1(\bigvee^3 S^1) \cong \mathsf{F}_3$$
 and $\pi_1(X_2) \cong \pi_1(\bigvee^4 S^1) \cong \mathsf{F}_4$.

Problem 2.

By problem 3 of 2006, Spring, $X \cong \mathsf{S}^1 \vee \mathsf{S}^1 \vee \mathsf{S}^2$. Defining $U \cong \mathsf{S}^1 \vee \mathsf{S}^1, V \cong \mathsf{S}^2$ gives $U \cap V \cong *$, and

$$\mathsf{H}_{j}(U) \cong \begin{cases} \mathbb{Z} & j = 0, \\ \mathbb{Z}^{\oplus 2} & j = 1, \\ 0 & \text{else}, \end{cases} \mathsf{H}_{j}(V) \cong \begin{cases} \mathbb{Z} & j = 0, 2, \\ 0 & \text{else}. \end{cases}$$

We already know that $H_0(X) \cong \mathbb{Z}$ since X is path connected. Then by Mayer-Vietoris,

$$0 \longrightarrow \mathbb{Z} \longrightarrow \mathsf{H}_2(X) \longrightarrow 0 \longrightarrow \mathbb{Z}^{\oplus 2} \xrightarrow{k_1 - \ell_1} \mathsf{H}_1(X) \xrightarrow{\partial_1} \mathbb{Z} \xrightarrow{(i_0, j_0)} \mathbb{Z}^{\oplus 2} \longrightarrow \mathbb{Z}$$

is exact.

- Immediately, $H_2(X) \cong \mathbb{Z}$.
- By exactness, $\ker(k_1 \ell_1) \cong 0$, so $\ker(\partial_1) \cong \operatorname{im}(k_1 \ell_1) \cong \mathbb{Z}^{\oplus 2}$. Next, note that (i_0, j_0) is injective since it's induced by the inclusions $i: U \cap V \hookrightarrow U$ and $j: U \cap V \hookrightarrow V$ of path connected spaces, so $\operatorname{im}(\partial_1) \cong \ker(i_0, j_0) \cong 0$. Thus $\operatorname{H}_1(X) \cong \mathbb{Z}^{\oplus 2}$.

$$\text{Hence } \mathsf{H}_j(X) \cong \begin{cases} \mathbb{Z} & j=0,\\ \mathbb{Z}^{\oplus 2} & j=1,\\ \mathbb{Z} & j=2,\\ 0 & \text{else} \end{cases}$$

Problem 3 (?).

No. Suppose $\Sigma \subset \mathbb{R}^3$ is a compact immersed surface without boundary and satisfies K(x) = -1 for all $x \in \Sigma$. Then by Gauss-Bonnet,

$$-\mathrm{area}(\Sigma) = -\iint_{\Sigma} \mathrm{d}A = \iint_{\Sigma} K \mathrm{d}A = 2\pi \chi(\Sigma) = 2\pi (2-2g),$$

where g is the genus of Σ . Thus $-2\pi(2-2g) = \text{area}(\Sigma) \geq 0$, and so we must have $g \geq 1$. But it's well known that any surface with genus $g \geq 1$ contains points having positive Gaussian curvature, so we've reached a contradiction.

Problem 4.

Background. The orthogonal group $O(n) \subset \mathsf{Mat}_n(\mathbb{R})$ is the group of isometries of \mathbb{R}^n , that is, the group of those matrices $x \in \mathsf{Mat}_n(\mathbb{R})$ which preserve the dot product, $\langle x \cdot, x \cdot \rangle = \langle \cdot, \cdot \rangle$. It's the real counterpart of the unitary group $\mathsf{U}(n) \subset \mathsf{Mat}_n(\mathbb{C})$. In this problem we show that O(n) is a Lie group.

Consider the map $f: \mathsf{Mat}_n(\mathbb{R}) \to \mathsf{Sym}(n)$, where $\mathsf{Sym}(n)$ is the space of symmetric $n \times n$ matrices, given by $f(x) := xx^\mathsf{T}$. Then $\mathsf{O}(n) = f^{-1}(1)$. Since f is clearly smooth, we're done if we can show that 1 is a regular value of f. To this end, let $a \in f^{-1}(1)$. Then for any $x \in \mathsf{T}_a \mathsf{Mat}_n(\mathbb{R})$,

$$df_{a}(x) = \lim_{h \to 0} \frac{f(a+hx) - f(a)}{h} = \lim_{h \to 0} \frac{aa^{\mathsf{T}} + hxa^{\mathsf{T}} + ahx^{\mathsf{T}} + h^{2}xx^{\mathsf{T}} - 1}{h}$$
$$= \lim_{h \to 0} (xa^{\mathsf{T}} + ax^{\mathsf{T}} + hxx^{\mathsf{T}}) = xa^{\mathsf{T}} + ax^{\mathsf{T}}.$$

The right-hand side is indeed in Sym(n) since taking its transpose leaves it unchanged. And, df_a differential is surjective since for any $y \in Sym(n)$,

$$df_a\left(\frac{1}{2}ya\right) = \frac{1}{2}y\underbrace{aa^{\mathsf{T}}}_{=1} + \frac{1}{2}\underbrace{aa^{\mathsf{T}}}_{=1}\underbrace{y^{\mathsf{T}}}_{=y} = y.$$

This shows that O(n) is a manifold. To find its dimension, observe that any matrix in $\mathsf{Sym}(n)$ is completely determined by its n diagonal entries and $\frac{1}{2}(n^2-n)$ entries in the upper triangle. So it follows that we have $\mathsf{dim}_{\mathbb{R}}(\mathsf{Sym}(n)) = n + \frac{1}{2}(n^2-n) = \frac{1}{2}n(n+1)$, and

$$\mathrm{dim}_{\mathbb{R}}(\mathsf{O}(n)) = \mathrm{dim}_{\mathbb{R}}(\mathsf{Mat}_n(\mathbb{R})) - \mathrm{dim}_{\mathbb{R}}(\mathsf{Sym}(n)) = n^2 - \frac{1}{2}n(n+1) = \frac{1}{2}n(n-1).$$

Problem 5.

Note that $\omega = \alpha$ on S^{n-1} since the denominator of α is identically 1 here. Then by Stokes,

$$\int_{\mathsf{S}^{n-1}}\alpha=\int_{\mathsf{S}^{n-1}}\omega=\int_{\mathsf{B}^n}\mathsf{d}\omega=\int_{\mathsf{B}^n}\mathsf{d}x_1\wedge\ldots\wedge\mathsf{d}x_n=\mathsf{vol}(\mathsf{B}^n)\neq0.$$

If $\alpha = d\beta$ for some $\beta \in \Omega^{n-2}(\mathbb{R}^n \setminus 0)$, then we obtain the contradiction

$$\int_{\mathbb{S}^{n-1}} \alpha = \int_{\mathbb{S}^{n-1}} d\beta = \int_{\partial \mathbb{S}^{n-1}} \beta = 0.$$

Problem 6.

Suppose $X \in \mathfrak{X}(\mathbb{R}^{2n})$ satisfies $\iota_X \omega = \mathsf{d} f$. Then upon equating the two expressions

$$\iota_X \omega = \sum_{j=1}^n \iota_X (\mathsf{d} x_j \wedge \mathsf{d} y_j) = \sum_{j=1}^n \left[(\iota_X \mathsf{d} x_j) \wedge \mathsf{d} y_j - \mathsf{d} x_j \wedge (\iota_X \mathsf{d} y_j) \right]$$

and

$$df = \sum_{j=1}^{n} \left(\frac{\partial f}{\partial x_j} dx_j + \frac{\partial f}{\partial y_j} dy_j \right),$$

we have $\mathrm{d} x_j(X) = \iota_X \mathrm{d} x_j = \frac{\partial f}{\partial y_j}$ and $\mathrm{d} y_j(X) = \iota_X \mathrm{d} y_j = -\frac{\partial f}{\partial x_j}$ for each $1 \leq j \leq n$, whereby

$$X = \sum_{j=1}^{n} \left(\frac{\partial f}{\partial y_j} \frac{\partial}{\partial x_j} - \frac{\partial f}{\partial x_j} \frac{\partial}{\partial y_j} \right).$$

Note that $d\omega = 0$. Then $\mathcal{L}_X \omega = \iota_X \underbrace{d\omega}_{=0} + d\underbrace{\iota_X \omega}_{=df} = d(df) = 0$ by Cartan.

Problem 7.

- (a) If $\alpha \in \mathsf{C}_p(X;\mathbb{Z})$ has $\partial \alpha = 0$, then α defines a homology class $[\alpha] \in \mathsf{H}_p(X;\mathbb{Z})$. Since $\mathsf{H}_p(X;\mathbb{Z})$ is a finite \mathbb{Z} -module, there's some $k \in \mathbb{Z} \setminus 0$ with $k[\alpha] = 0 \in \mathsf{H}_p(X;\mathbb{Z})$, or equivalently, $k\alpha = \partial \beta$ for some $\beta \in \mathsf{C}_{p+1}(X;\mathbb{Z})$.
- (b) The element $u \in \mathsf{C}^{p+1}(X;\mathbb{Z})$ defines a cohomology class $[u] \in \mathsf{H}^{p+1}(X;\mathbb{Q}) \cong 0$ since $\mathsf{d} u = 0$. Then $[u] = 0 \in \mathsf{H}^{p+1}(X;\mathbb{Q})$ and hence $u = \mathsf{d} w$ for some $w \in \mathsf{C}^p(X;\mathbb{Q})$. With α, β, k as above, we define a map $\tilde{L}_u : \mathsf{C}_p(X;\mathbb{Z}) \to \mathbb{Q}$ by

$$\tilde{L}_u(\alpha) := \frac{1}{k} u(\beta) := \frac{1}{k} \mathsf{d} w(\beta) = \frac{1}{k} w(\partial \beta) = \frac{1}{k} w(k\alpha) = w(\alpha).$$

Indeed for any pair β, k satisfying $k\alpha = \beta$, the right-hand side is dependent only on α , so \tilde{L}_u is well defined. Moreover, suppose $\alpha' \in \mathsf{C}_p(X;\mathbb{Z})$ has $[\alpha] = [\alpha'] \in \mathsf{H}_p(X;\mathbb{Z})$. Then $\alpha - \alpha' = \partial \gamma$ for some $\gamma \in \mathsf{C}_{p+1}(X;\mathbb{Z})$, and so

$$\tilde{L}_u(\alpha) - \tilde{L}_u(\alpha') = w(\alpha - \alpha') = w(\partial \gamma) = \mathsf{d} w(\gamma) \in \mathbb{Z} \implies \left[\tilde{L}_u(\alpha)\right] = \left[\tilde{L}_u(\alpha')\right] \in \mathbb{Q}/\mathbb{Z}.$$

Thus we have an induced well defined map $L_u: \mathsf{H}_p(X;\mathbb{Z}) \to \mathbb{Q}/\mathbb{Z}$ given by $L_u([\alpha]) := [\tilde{L}_u(\alpha)]$. And since $w = \tilde{L}_u$ is a homomorphism, then so is L_u .