2008, Fall

Problem 1.

Background. Certain references may call $(\Omega^{\bullet}(M), \mathsf{d}_{f}^{\bullet})$ the f-twisted de Rham cochain complex of M. In this problem we show that d_{f} is indeed a coboundary operator, and compute the 0th cohomology of this complex for \mathbb{R} .

(a) Observe that $\mathrm{d}f \wedge \mathrm{d}f = \mathrm{d}(f \wedge \mathrm{d}f) = -\mathrm{d}(\mathrm{d}f \wedge f) = -\mathrm{d}f \wedge \mathrm{d}f$, and so $\mathrm{d}f \wedge \mathrm{d}f = 0$. Then $\mathrm{d}_f^2 \omega = \mathrm{d}_f (\mathrm{d}\omega + \mathrm{d}f \wedge \omega) = \mathrm{d}(\mathrm{d}\omega + \mathrm{d}f \wedge \omega) + \mathrm{d}f \wedge (\mathrm{d}\omega + \mathrm{d}f \wedge \omega)$ $= \underbrace{\mathrm{d}^2 \omega}_{=0} + \underbrace{\mathrm{d}^2 f}_{=0} \wedge \omega - \mathrm{d}f \wedge \mathrm{d}\omega + \mathrm{d}f \wedge \mathrm{d}\omega + \underbrace{\mathrm{d}f \wedge \mathrm{d}f}_{=0} \wedge \omega = 0$

for any $\omega \in \Omega^j(M)$.

(b) Suppose $g \in \ker((\mathsf{d}_f)_0) \subset \Omega^0(M) \cong \mathsf{C}^\infty(\mathbb{R})$. Then $0 = \mathsf{d}_f g = \mathsf{d} g + \mathsf{d} f \wedge \mathsf{d} g = \mathsf{d} g - g \mathsf{d} f$, so $g = \mathsf{d} g / \mathsf{d} f$ and hence $g = c_g e^f$ for some constant $c_g \in \mathbb{R}$. Conversely, any $g \in \mathsf{C}^\infty(\mathbb{R})$ of this form clearly satisfies $\mathsf{d}_f g = 0$. Hence the assignment $g \mapsto c_g$ is a one-to-one correspondence from $\mathsf{H}_f^0(\mathbb{R}) \cong \ker((\mathsf{d}_f)_0)$ to \mathbb{R} , which completes the argument.

Problem 2.

We need only check that the map $f^*: \mathsf{H}^{m+n}_{\mathsf{dR}}(\mathsf{S}^m \times \mathsf{S}^n) \to \mathsf{H}^{m+n}_{\mathsf{dR}}(\mathsf{S}^{m+n})$ is trivial, since we know that $\mathsf{H}^j_{\mathsf{dR}}(\mathsf{S}^{m+n}) \cong 0$ for all $j \geq 1$ with $j \neq m+n$. Given volume forms $\alpha \in \Omega^m(\mathsf{S}^m)$ and $\beta \in \Omega^n(\mathsf{S}^n)$, the canonical projections $\pi_m : \mathsf{S}^m \times \mathsf{S}^n \twoheadrightarrow \mathsf{S}^m$ and $\pi_n : \mathsf{S}^m \times \mathsf{S}^n \twoheadrightarrow \mathsf{S}^n$ yield the two nonzero forms $\pi^*_m \alpha \in \Omega^m(\mathsf{S}^m \times \mathsf{S}^n)$ and $\pi^*_n \beta \in \Omega^n(\mathsf{S}^m \times \mathsf{S}^n)$. It's easy to verify that $(\pi^*_m \alpha) \wedge (\pi^*_n \beta)$ is a volume form on $\mathsf{S}^m \times \mathsf{S}^n$, whereby $[(\pi^*_m \alpha) \wedge (\pi^*_n \beta)]$ generates $\mathsf{H}^{m+n}_{\mathsf{dR}}(\mathsf{S}^m \times \mathsf{S}^n)$. Then f^* is trivial if it maps this generator to 0. To see this, recall that f^* is trivial on $\mathsf{H}^m_{\mathsf{dR}}(\mathsf{S}^m \times \mathsf{S}^n)$ and $\mathsf{H}^n_{\mathsf{dR}}(\mathsf{S}^m \times \mathsf{S}^n)$, whereby

$$f^*[(\pi_m^*\alpha) \wedge (\pi_n^*\beta)] = \underbrace{(f^*[\pi_m^*\alpha])}_{=0} \wedge \underbrace{(f^*[\pi_n^*\beta])}_{=0} = 0$$

as desired. \Box

Problem 3 (?).

Remark. It may be tempting to try to exhibit C as the preimage of 0 under $f(x,y) := y^2 - x^3$ and observe that $df_{(0,0)}$ is nonsurjective. However, this wouldn't prove that C isn't a submanifold of \mathbb{R}^2 , but only that f was the wrong choice of function; a priori we may have that $C = g^{-1}(p)$ for some other smooth function g and some regular value p of g.

Assume that C is a submanifold of \mathbb{R}^2 . Then by the implicit function theorem, on a sufficiently small neighborhood of the point $(0,0) \in C$, we can write y as a function of x. By definition of C, this function must be $y = \pm x^{3/2}$. But on any neighborhood of 0 on the x-axis, this isn't a function since it assigns two values to any x > 0.

Problem 4.

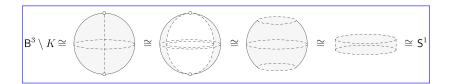
Let $X \subset \mathbb{R}^3$ be the solid torus with $\partial X = T$, and let $\omega := x dy \wedge dz - y dx \wedge dz + z dx \wedge dy$. Then $d\omega = 3dx \wedge dy \wedge dz$, and

$$\int_T \omega = 3 \int_X \mathrm{d} x \wedge \mathrm{d} y \wedge \mathrm{d} z = 3 \mathrm{vol}(X) = 3 (2\pi R) (\pi r^2) = 6 \pi^2 r^2 R$$

by Stokes. \Box

Problem 5.

We first stretch out the missing curve K inside B^3 until we hollow out the inside of the sphere, leaving us a copy of S^2 with two points removed. We then stretch out each of these missing points along the surface and toward the equator; the result is equivalent to a circle as shown.



Thus
$$\mathsf{H}_{j}(\mathsf{B}^{3}\setminus K)\cong \mathsf{H}_{j}(\mathsf{S}^{1})\cong \begin{cases} \mathbb{Z} & j=0,1,\\ 0 & \mathrm{else.} \end{cases}$$

Problem 6.

The 3-sheeted covers of X are classified by equivalence classes of homomorphisms $\pi_1(X) \to \Sigma_3$. Note that if f is such a homomorphism, then f is completely determined by where it sends the two generators x, y of $\pi_1(X) \cong \pi_1(S^1 \times S^1) \cong \mathbb{Z}^{\oplus 2}$; and, f(x)f(y) = f(xy) = f(yx) = f(y)f(x) since $\mathbb{Z}^{\oplus 2}$ is abelian. So these homomorphisms are in bijection with ordered pairs of elements $(\alpha, \beta) \in \Sigma_3$ with $\alpha\beta = \beta\alpha$, and we turn our attention to counting these pairs.

- Any of the six elements of Σ_3 commutes with itself, so this gives us six ordered pairs of the form (α, α) , with $\alpha \in \Sigma_3$.
- Any of the six elements of Σ_3 commutes with $1 \in \Sigma_3$, so this gives us five new unordered pairs of the form $\{1, \alpha\}$, with $\alpha \in \Sigma_3$, and hence ten new ordered pairs. (We already counted the pair (1, 1) in the previous step.)
- Finally, it is routinely verified that the two 3-cycles in Σ_3 commute, so we have two new ordered pairs ((123), (132)) and ((132), (123)).

In all, we've counted 18 pairs of the desired form, and from this we conclude that there are exactly 18 3-sheeted covers of X.