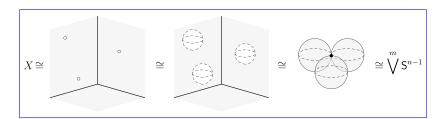
2005, Fall

Problem 1.

Let $n \geq 3$ and set $X := \mathbb{R}^n \setminus \{x_1, \dots, x_m\}$, with $x_i \neq x_j$ if $i \neq j$. Expanding each missing point into a small bubble, we may shrink the complement of these bubbles to a point to obtain a wedge of m copies of \mathbb{S}^{n-1} .



Thus
$$\pi_1(X) \cong \pi_1(\bigvee^m S^{n-1}) \cong \pi_1(S^{n-1})^{*m} \cong 1.$$

Problem 2.

Equivalence classes of connected covers of $\mathbb{R}P^2 \times \mathbb{R}P^2$ are in bijection with the 4 subgroups of

$$\pi_1(\mathbb{R}\mathsf{P}^2 \times \mathbb{R}\mathsf{P}^2) \cong \pi_1(\mathbb{R}\mathsf{P}^2) \times \pi_1(\mathbb{R}\mathsf{P}^2) \cong \mathbb{Z}_2^{\oplus 2}.$$

The identity subgroup corresponds to the universal cover $S^2 \times S^2$; the entire group corresponds to the trivial cover $\mathbb{R}\mathsf{P}^2 \times \mathbb{R}\mathsf{P}^2$; the subgroups generated by (0,1) and (1,0) correspond to the covers $S^2 \times \mathbb{R}\mathsf{P}^2$ and $\mathbb{R}\mathsf{P}^2 \times S^2$, respectively.

Problem 3.

Assume $(\alpha \wedge \alpha)_x \neq 0$ for all $x \in S^4$. Then $\alpha \wedge \alpha$ is a volume form on S^4 , so $\int_{S^4} \alpha \wedge \alpha \neq 0$. But

$$\int_{\mathsf{S}^4} \alpha \wedge \alpha = \int_{\mathsf{B}^5} \mathsf{d}(\alpha \wedge \alpha) = \int_{\mathsf{B}^5} [\underbrace{(\mathsf{d}\alpha)}_{=0} \wedge \alpha + \alpha \wedge \underbrace{(\mathsf{d}\alpha)}_{=0}] = 0,$$

by Stokes, a contradiction.

Problem 4 (?).

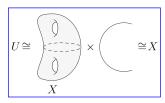
The Euler characteristic of M is that of a genus-3 surface, $\chi(M) = -4$. And, ∂M is the boundary of the plane, so integrating the geodesic curvature $k_{\rm g}$ over this boundary yields the sum of its exterior angles, namely $4(3\pi/2) = 6\pi$. Then

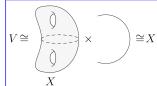
$$\iint_M K \mathrm{d}A = 2\pi \chi(M) - \int_{\partial M} k_{\mathrm{g}} \mathrm{d}s = 2\pi (-4) - 6\pi = -14\pi$$

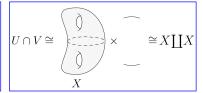
by Gauss-Bonnet. \Box

Problem 5 (?).

Defining







gives $U \cup V \cong X \times S^1$. For any $j \in \mathbb{Z}$, by Mayer-Vietoris we have an exact sequence

$$\mathsf{H}_{j}(X)^{\oplus 2} \xrightarrow{\ \iota_{j} \ } \mathsf{H}_{j}(X)^{\oplus 2} \xrightarrow{\ f \ } \mathsf{H}_{j}(X \times \mathsf{S}^{1}) \xrightarrow{\ \partial \ } \mathsf{H}_{j-1}(X)^{\oplus 2} \xrightarrow{\ \iota_{j-1} \ } \mathsf{H}_{j-1}(X)^{\oplus 2}.$$

Here, $\iota_j = ((\iota_U)_*, (\iota_V)_*)$ is the map induced by the inclusions $\iota_U : U \cap V \hookrightarrow U$ and $\iota_V : U \cap V \hookrightarrow V$, and acts as $\iota_j([\omega]) = ([\omega], [\omega])$ on any $[\omega] \in \mathsf{H}_j(X \coprod X) \cong \mathsf{H}_j(X)^{\oplus 2}$. So $\mathsf{im}(\iota_j) \cong \mathsf{H}_j(X)$ and consequently $\mathsf{ker}(\iota_j) \cong \mathsf{H}_j(X)$ also. We have a similar result for j-1. Then

$$\operatorname{im}(\partial) \cong \ker(\iota_{i-1}) \cong \operatorname{H}_{i-1}(X), \quad \ker(\partial) \cong \operatorname{im}(f) \cong \operatorname{H}_{i}(X)$$

since
$$\ker(f) \cong \operatorname{im}(\iota_j) \cong \operatorname{H}_j(X)$$
, and therefore $\operatorname{H}_j(X \times S^1) \cong \operatorname{H}_j(X) \oplus \operatorname{H}_{j-1}(X)$.

Problem 6.

• Let M be an m-manifold. Via the canonical projection $\pi: \mathsf{T}^*M \to M$, we may lift any chart (U,φ) of M to a subset $\mathsf{T}^*U := \pi^{-1}(U) \subset \mathsf{T}^*M$ and a map $\varphi \times \mathsf{d}\varphi : \mathsf{T}^*U \to \varphi(U) \times \mathbb{R}^m$. Requiring this map to be a homeomorphism defines a topology on T^*M and makes $(\mathsf{T}^*U, \varphi \times \mathsf{d}\varphi)$ into a chart for T^*M . This topology inherits the second countable and Hausdorff properties from that of M. Moreover, given any two charts $(\mathsf{T}^*U_1, \varphi_1 \times \mathsf{d}\varphi_1), (\mathsf{T}^*U_2, \varphi_2 \times \mathsf{d}\varphi_2)$ with $\mathsf{T}^*U_1 \cap \mathsf{T}^*U_2 \neq \varnothing$, we have $U_1 \cap U_2 \neq \varnothing$ and so the transition map

$$\tau:=(\varphi_2\times \mathsf{d}\varphi_2)\circ (\varphi_1\times \mathsf{d}\varphi_1)^{-1}=(\varphi_2\circ \varphi_1^{-1})\times (\mathsf{d}\varphi_2\circ \mathsf{d}\varphi_1^{-1})$$

is smooth since its first component is a transition map of M and its second component is linear. Therefore T^*M is a (smooth) manifold.

- It remains to check that any transition map τ as above is orientation-preserving. Say T^*U_1 has local coordinates $(x_1,\ldots,x_m,v_1,\ldots,v_m)$, and express the differential $\mathsf{d}\tau_{(x,v)}$ at a point $(x,v)\in\mathsf{T}^*U_1$ as a $(2m)\times(2m)$ block matrix.
 - (i) In the upper-left block, we differentiate the first m entries of τ w.r.t. x and obtain the usual Jacobian $d(\varphi_2 \circ \varphi_1^{-1})_x$.
 - (ii) In the upper-right block, we differentiate the first m entries of τ , which are independent of v, w.r.t. v, and obtain a 0 block.
 - (iii) In the lower-right block, we differentiate the last m entries of τ w.r.t. v. For $1 \le i, j \le m$, the ij-entry in this block is

$$\partial_{v_j}(\mathrm{d}\varphi_2\circ\mathrm{d}\varphi_1^{-1})_i=\partial_{v_j}\sum_{k=1}^m\partial_{x_k}(\varphi_2\circ\varphi_1^{-1})_i(x)v_k=\partial_{x_j}(\varphi_2\circ\varphi_1^{-1})_i(x),$$

which coincides with the ij-entry of the Jacobian $\mathsf{d}(\varphi_2 \circ \varphi_1^{-1})_x$.

Hence

$$\det(\mathrm{d}\tau_{(x,v)}) = \begin{vmatrix} \mathrm{d}(\varphi_2 \circ \varphi_1^{-1})_x & 0 \\ * & \mathrm{d}(\varphi_2 \circ \varphi_1^{-1})_x \end{vmatrix} = \det\left(\mathrm{d}(\varphi_2 \circ \varphi_1^{-1})_x\right)^2 > 0$$

as desired.

Problem 7.

Background. This problem concerns compactly supported de Rham cohomology. Given a manifold M^m and $0 \le k \le m$, we use this cohomology to define the cup product,

$$\smile$$
: $\mathsf{H}^k(M) \times \mathsf{H}^{m-k}_\mathsf{c}(M) \to \mathbb{R},$

given by $[\alpha] \smile [\beta] := \int_M \alpha \wedge \beta$. Poincaré duality then states that the map $\mathsf{H}^k(M) \to \mathsf{H}^{m-k}_\mathsf{c}(M)^*$ given by $[\alpha] \mapsto [\alpha] \smile (\cdot)$ is an isomorphism.

Denote by $\mathsf{H}^{\bullet}_{\mathsf{c}}(\mathbb{R})$ the cohomology of $(\Omega^{\bullet}_{\mathsf{c}}(\mathbb{R}), \mathsf{d}^{\bullet})$. For all $j \geq 2$ we clearly have $\mathsf{H}^{j}_{\mathsf{c}}(\mathbb{R}) \cong 0$ since $\Omega^{j}_{\mathsf{c}}(\mathbb{R}) \cong 0$, so it remains to compute $\mathsf{H}^{j}_{\mathsf{c}}(\mathbb{R})$ for j = 0, 1. Observe that both $\Omega^{0}_{\mathsf{c}}(\mathbb{R})$ and $\Omega^{1}_{\mathsf{c}}(\mathbb{R})$ are canonically isomorphic to $\mathsf{C}^{\infty}_{\mathsf{c}}(\mathbb{R})$, the subset of $\mathsf{C}^{\infty}(\mathbb{R})$ consisting of compactly supported functions.

- Note that $f \in H^0_{\mathsf{c}}(\mathbb{R}) \cong \ker(\mathsf{d}^0)$ if and only if f is constant, whereby $f \equiv 0$ since no other such function is compactly supported. Thus $\mathsf{H}^0_{\mathsf{c}}(\mathbb{R}) \cong 0$.
- Consider the map $I: \mathsf{H}^1_\mathsf{c}(\mathbb{R}) \cong \mathsf{C}^\infty_\mathsf{c}(\mathbb{R}) \to \mathbb{R}$ given by $I(f) := \int_{\mathbb{R}} f$. Note that $\ker(I) \subset \operatorname{im}(\mathsf{d}^0)$ since if $f \in \ker(I)$, then $f \cong \mathsf{d}g$ where g is the compactly supported function given by $g(x) := \int_{-\infty}^x f(x) \mathsf{d}x$. Conversely if $f \in \operatorname{im}(\mathsf{d}^0)$, then $f = \mathsf{d}g$ for some $g \in \mathsf{C}^\infty_\mathsf{c}(\mathbb{R})$, and

$$\int_{\mathbb{R}} f = \int_{-\infty}^{\infty} g'(x) \mathrm{d}x = \lim_{x \to \infty} g(x) - \lim_{x \to -\infty} g(x) = 0,$$

so this shows $\mathsf{im}(\mathsf{d}^0) \cong \mathsf{ker}(I)$. Then $\mathsf{H}^1_\mathsf{c}(\mathbb{R}) \cong \mathsf{ker}(\mathsf{d}^1)/\mathsf{im}(\mathsf{d}^0) \cong \mathsf{C}^\infty_\mathsf{c}(\mathbb{R})/\mathsf{ker}(I) \cong \mathbb{R}$, since I is clearly surjective.

In summary,
$$\mathsf{H}^j_\mathsf{c}(\mathbb{R}) \cong \begin{cases} \mathbb{R} & j=1, \\ 0 & \text{else.} \end{cases}$$