Geometry/Topology Qualifying Exam Fall 2003

- 1. Let T^n be the *n*-dimensional torus $S^1 \times S^1 \times \cdots \times S^1$. Construct a differentiable embedding of T^n in \mathbb{R}^{n+1} .
- 2. Let S^n denote the *n*-dimensional sphere, and consider a differentiable map $f: S^n \to \mathbb{R}^n$ such that $f(S^n)$ has non-empty interior in \mathbb{R}^n .
 - a) Warm-up: Show there there is at least one point $x \in S^n$ where f is a local diffeomorphism, namely such that there exists an open neighborhood $U \subset M$ of x such that restriction $f_{|U}: U \to f(U)$ is a diffeomorphism.
 - b) Show that there exists at least two points $x, y \in S^n$ such that f is a local diffeomorphism at x and y, f is orientation-preserving at x, and f is orientation-reversing at y.
- 3. Let M be a manifold with fundamental group isomorphic to $(\mathbb{Z}/2) \times (\mathbb{Z}/3) \times (\mathbb{Z}/5)$. Up to isomorphism, how many 3-fold covers does it have? Recall that a 3-fold cover is a covering map $p: \widetilde{M} \to M$ such that each $p^{-1}(x)$ consists of 3 points, and that two such covers $p: \widetilde{M} \to M$ and $p': \widetilde{M'} \to M$ are isomorphic if there exists a homeomorphism $\varphi: \widetilde{M} \to \widetilde{M'}$ such that $p' \circ \varphi = p$.
- 4. Let M be a manifold of dimension n, and let ω be a differential form of degree n-1 on M. Suppose that $\int_N \omega = 0$ for every (n-1)-dimensional submanifold N of M. Show that dw = 0. (hint: look at small spheres.)
- 5. Let S^n denote the *n*-dimensional sphere and define $X = S^1 \times S^2$. Also, choose a point $p_n \in S^n$, for n = 1, 2, 3, and take the quotient Y of the disjoint union of S^1 , S^2 , S^3 by the equivalence relation identifying p_1 , p_2 , p_3 to a single point $p \in Y$.
 - a) Calculate the homology groups of X and of Y.
 - b) Calculate the fundamental groups as well.
 - c) Are these spaces homeomorphic?
- 6. Let $T = S^1 \times S^1$ denote the 2-dimensional torus. Identify the circle S^1 to $\{z \in \mathbb{C}; |z| = 1\}$, and the 2-dimensional disk B^2 to $\{z \in \mathbb{C}; |z| \leq 1\}$ in the complex plane \mathbb{C} . Adjoin to T two copies D_1 and D_2 of B^2 , where the boundary $\partial D_1 = \partial B^2$ of the disk D_1 is glued to $S^1 \times \{1\}$ by the map $z \mapsto z^3$ and where the boundary ∂D_2 of D_1 is glued to $\{1\} \times S^1$ by the map $z \mapsto z^5$. Calculate the fundamental group of X.