

Analysis Qualifying Exam

Spring, 1999

- In order to pass, you must do well on both the Real and Complex Analysis parts—high performance on one portion does not compensate for low performance on the other.
- Start each problem on a fresh sheet of paper.

REAL ANALYSIS. Do only three of the following four problems.

1. Suppose f_n , where $n = 1, 2, \dots$, and f are nonnegative functions on a measure space (X, \mathcal{M}, μ) with $f_n \rightarrow f$ a.e. and $\int_X f_n d\mu \rightarrow \int_X f d\mu$. Show that $\int_E f_n d\mu \rightarrow \int_E f d\mu$ for every measurable E . (Hint: Use Fatou's Lemma.)
2. Let (X, \mathcal{M}) and (Y, \mathcal{N}) be measurable spaces and $E \in \mathcal{M} \otimes \mathcal{N}$ (the product σ -algebra in $X \times Y$). Show that every section $E_x = \{y \in Y : (x, y) \in E\}$ is measurable.
3. Let A denote the set of all $f \in C[0, 1]$ such that f is monotonic on some open subinterval of $[0, 1]$. Show that A is meager (that is, of the first category) in $C[0, 1]$ in the topology of uniform convergence.
4. (a) Show that the class of all step functions, of form $\sum_{j \leq n} c_j \chi_{(a_j, b_j)}$ with a_j, b_j finite, is dense in $L^1(\mu)$ where μ is the Lebesgue measure on \mathbb{R} . (Hint: Why is the corresponding statement true for simple functions?)
(b) Suppose $f \in L^1(\mu)$. Show that $\lim_{h \rightarrow 0} \int |f(x + h) - f(x)| dx = 0$. (Hint: Use (a).)

COMPLEX ANALYSIS. Do all four problems.

5. Suppose that f is analytic on \mathbb{C} and that f is a homeomorphism of \mathbb{C} onto a set U .
 - (a) Show that f has a non-essential singularity at ∞ .
 - (b) Deduce that f must be of the form $f(z) = az + b$ for some $a \neq 0$ and that $U = \mathbb{C}$.
6. (a) Suppose that f is analytic on the open unit disc $|z| < 1$ and there is a constant M such that $|f^{(k)}(0)| \leq k^2 M^k$ for all $k \geq 1$. Show that f can be extended to be analytic on \mathbb{C} .
(b) Suppose that f is analytic on the open unit disc $|z| < 1$ and there is a constant $M > 1$ such that $|f(1/k)| \leq M^{-k}$ for $k \geq 2$. Show that f is identically zero.