

SPRING 1998 ANALYSIS QUALIFYING EXAM
MONDAY, MAY 4, 1998

DIRECTIONS. Do any seven of the following eight problems, using the paper and pens provided. Start each problem on a *fresh* sheet of paper. When you have completed the exam, be sure your name is printed on each page; sign the envelope, and return the exam papers in the envelope. You may keep this printed page.

Problem 1. Suppose $f \in L^1(d\mu)$. Prove: for each $\varepsilon > 0$ there exists $\delta > 0$ such that for each measurable set A with $\mu(A) < \delta$, there holds

$$\left| \int_A f d\mu \right| < \varepsilon.$$

Problem 2. Let f be an entire function which is real on the real axis, not identically zero, and for which $f(0) = 0$. Prove: if f maps the imaginary axis into a straight line, then that straight line must be either the real axis or the imaginary axis.

Problem 3. Suppose $\{f_n\}$ is a sequence of continuously differentiable functions on $[0, 1]$ which converges in the L^1 sense to 0, and whose derivatives $\{f'_n\}$ also converge to 0 in the L^1 sense. Prove: $\{f_n\}$ converges to zero uniformly.

Problem 4. Suppose D is the open unit disk in \mathbb{C} , and $f : D \rightarrow D$ satisfies $f(1/2) = 1/2$. Show that $|f'(1/2)| \leq 3/4$.

Problem 5. Let (X, \mathcal{T}) be a topological space which has the property that every closed set F is the intersection of a *countable* family of open sets. Prove: any finite measure μ on the Borel field of (X, \mathcal{T}) is *regular*: for each Borel set E and each $\varepsilon > 0$, there exist an open set $G \supset E$ and a closed set $F \subset E$ such that $\mu(G \setminus F) < \varepsilon$. (Hint: consider the collection of Borel sets E for which this condition is true.)

Problem 6. Let D be the open unit disk in \mathbb{C} , and let $f : D \rightarrow D$ be analytic with $f(0) = 0$. Suppose

$$|f(z)| \geq \frac{1}{6} \quad \text{for all } |z| = \frac{1}{4}.$$

Show that f assumes every value in the disk $|w| < \frac{1}{6}$.

Problem 7. Let $g : [0, 1] \rightarrow \mathbb{R}$ be Lebesgue measurable, and suppose $f(x, y) := g(x) - g(y)$ is Lebesgue integrable on $[0, 1] \times [0, 1]$. Prove: g is Lebesgue integrable.

Problem 8. Evaluate: $\int_0^\infty \frac{\sqrt{x}}{1+x^3} dx$.

Q4 : ... f analytic --- Show that $|f'(\frac{1}{2})| \leq 1$
announced 11:38am