REAL AND COMPLEX ANALYSIS QUALIFYING EXAM

SPRING 1997

Directions: Do any seven of the following eight problems,

Problem 1

Problem 2

Problem 3

Problem 4

Problem 5

Problem 6

Problem 7

Prove: if n > 2 is an integer, then
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Suppose €2 is an open connected region of the complex plane and f is a non-constant
analytic function on Q2. Prove: if [f(z)| = 1 on the boundary of Q, then f(z) has at
least one zero in ).

Formally, we have that
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so that on setting ¢ = 1 we obtain
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Justify the calculation.

Let X' = C[0.1] be the space of all bounded continuous functions from [0,1] to E
with the sup-norm distance,

d(f.g) = sup [f(t)— g(t)|

0<t<1

You may assume that (X,d) is complete. Let F : X — X be a strict contraction,
L.e., a function such that there exists k < 1 with

d(Fx, Fy) < kd(x,y) for all o,y e X

Let I denote the identity operator on X, prove:

o [ 4+ Fisa 1-1 mapping of X onto X

e (I + F) ! is continuous
Let A : [0,1] x [0,1] — E be continuous, and let F be the family of all functions f
on [0, 1] of the form

|
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]
Show that for each £ = 0 the function
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has infinitely many zeros in the strip |3z| < 2.

Determine the order of the entire function
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(Recall that the order of an entire function f is

. loglog M(r)
litn
F—D0 r

where M(r) = max. -, | f(z)].)
Problem 8 Prove: if 4 and B are Lebesgue-measurable subsets of B with positive Lebesgue
measure, then the set

A+B={a+b:ac Abe B}

has non-empty interior. {Hint: consider the convolution of the characteristic functions
of A and B.)



