

REAL AND COMPLEX ANALYSIS QUALIFYING EXAM

SPRING 1997

Directions: Do any **seven** of the following eight problems.

Problem 1 Prove: if $n \geq 2$ is an integer, then

$$\int_0^\infty \frac{dx}{1+x^n} = \frac{x/n}{\sin(\pi/n)}$$

Problem 2 Suppose Ω is an open connected region of the complex plane and f is a non-constant analytic function on $\bar{\Omega}$. Prove: if $|f(z)| \equiv 1$ on the boundary of Ω , then $f(z)$ has at least one zero in Ω .

Problem 3 Formally, we have that

$$\begin{aligned} \frac{(-1)^n n!}{t^{n+1}} &= \frac{d^n}{dt^n} \left(\frac{1}{t} \right) = \frac{d^n}{dt^n} \int_0^\infty e^{-tx} dx \\ &= \int_0^\infty \frac{\partial^n}{\partial t^n} e^{-tx} dx = \int_0^\infty (-1)^n x^n e^{-tx} dx \end{aligned}$$

so that on setting $t = 1$ we obtain

$$\int_0^\infty x^n e^{-x} dx = n!$$

Justify the calculation.

Problem 4 Let $X = C[0, 1]$ be the space of all bounded continuous functions from $[0, 1]$ to \mathbb{R} with the sup-norm distance,

$$d(f, g) = \sup_{0 \leq t \leq 1} |f(t) - g(t)|$$

You may assume that (X, d) is complete. Let $F : X \rightarrow X$ be a strict contraction, i.e., a function such that there exists $k < 1$ with

$$d(Fx, Fy) \leq kd(x, y) \text{ for all } x, y \in X$$

Let I denote the identity operator on X , prove:

- $I + F$ is a 1-1 mapping of X onto X
- $(I + F)^{-1}$ is continuous

Problem 5 Let $K : [0, 1] \times [0, 1] \rightarrow \mathbb{R}$ be continuous, and let \mathcal{F} be the family of all functions f on $[0, 1]$ of the form

$$f(x) = \int_0^1 g(y)K(x, y) dy$$

Problem 6 Show that for each $\varepsilon > 0$ the function

$$f(z) = \sin z + \frac{1}{z}$$

has infinitely many zeros in the strip $|\Im z| < \varepsilon$.

Problem 7 Determine the order of the entire function

$$f(z) = \prod_{n=1}^{\infty} \left(1 + \frac{z}{n^2} \right)$$

(Recall that the *order* of an entire function f is

$$\lim_{r \rightarrow \infty} \frac{\log \log M(r)}{r}$$

where $M(r) = \max_{|z|=r} |f(z)|$.)

Problem 8 Prove: if A and B are Lebesgue-measurable subsets of \mathbb{R} with positive Lebesgue measure, then the set

$$A + B = \{a + b : a \in A, b \in B\}$$

has non-empty interior. (Hint: consider the convolution of the characteristic functions of A and B .)