

Spring 1995

Analysis Qualifying Examination
Tuesday, May 2, 1995

INSTRUCTIONS. Do **any seven** of the following problems; begin each problem on a fresh sheet of paper.

Problem 1. Let $f(z)$ be analytic in $|z| \leq 1$, with $f(0) = a_0 \neq 0$. If $M = \max_{|z|=1} |f(z)|$, show that $f(z) \neq 0$ for

$$|z| < \frac{|a_0|}{|a_0| + M}.$$

Problem 2. Let μ be a finite measure on (X, \mathcal{B}) , suppose $f_n \rightarrow f$ a.e. on X , and $\|f_n\|_2 \leq M < \infty$ for all n . Show that $f_n \rightarrow f$ in L^1 .

Problem 3. Compute:

$$\int_{|\xi|=1} \frac{d\xi}{\sqrt{\xi}}.$$

Problem 4. Suppose μ is a measure on (X, \mathcal{B}) , and suppose the function $f : \mathbb{R} \times X \rightarrow \mathbb{R}$ is differentiable in the L^2 sense, that is, $f(t, \cdot) \in L^2(\mu)$ for all t and $(f(t+h, \cdot) - f(t, \cdot))/h$ converges in $L^2(\mu)$ to a limit $g(t, \cdot)$ as $h \rightarrow 0$. Define

$$\alpha(s, t) = \int_X f(s, x) f(t, x) d\mu(x).$$

Prove: $\frac{\partial^2 \alpha}{\partial t \partial s}$ exists.

Problem 5. Show that $f(z) = z^5 + z^3 + 2z + 3$ has only one zero in the first quadrant $x \geq 0, y \geq 0$ (where $z = x + iy$).

Problem 6. Investigate the convergence of $\sum_n u_n$, where

$$u_n = \int_0^1 \frac{x^n}{1-x} \sin(\pi x) dx.$$

Problem 7. If $f(z)$ is analytic for $|z| < 1$ and $f(0) = 0$, prove that

$$\sum_{n=1}^{\infty} f(z^n)$$

converges in $|z| < 1$ to an analytic function.

Problem 8. If $f : \mathbb{R} \rightarrow \mathbb{R}$ is Lebesgue measurable, prove that its graph

$$G = \{(x, f(x)) : x \in \mathbb{R}\}$$

has Lebesgue measure zero in \mathbb{R}^2 . (Hint: first do it for bounded functions.)