

REAL ANALYSIS QUALIFYING EXAM

SPRING 1992

Problem 1 Let (X, Σ, μ) be a measure space and $\{f_n\}$ a sequence in $L^1(d\mu)$ which converges a.e. to $f \in L^1(d\mu)$. Prove: $f_n \rightarrow f$ in $L^1(d\mu)$ iff $\int |f_n| d\mu \rightarrow \int |f| d\mu$.

Hint: Apply Fatou's lemma to $|f| + |f_n| - |f - f_n|$.

Problem 2 Let $\{f_n\}$ be a sequence of Lebesgue-measurable real-valued functions on $[0, 1]$ such that

$$\lim_{n \rightarrow \infty} \int_0^1 |f_n(x)| dx = 0$$

Prove: there exists a subsequence of $\{f_n\}$ such that $\{f_{n_i}(x)\}$ converges to 0 for a.e. x .

Problem 3 Prove that Lebesgue measure λ on \mathbb{R} is translation-invariant: if A is a Lebesgue-measurable subset of \mathbb{R} , then for each $u \in \mathbb{R}$, $u + A$ is also Lebesgue-measurable and $\lambda(u + A) = \lambda(A)$.

Problem 4 A function $f : \mathbb{R} \rightarrow \mathbb{R}$ is said to be **lower semi-continuous** provided

$$f(x) \leq \liminf_{n \rightarrow \infty} f(x_n)$$

whenever $\lim_n x_n = x$. Show that every lower semi-continuous function is Borel measurable.

Problem 5 Show that the function φ defined by

$$\varphi(p) = \int_0^\infty x^p e^{-x} dx \quad (p \geq 0)$$

is well-defined and differentiable on $(0, \infty)$.