

Qualifying Exam: Real Analysis

Unofficial solutions by Alex Fu

Spring 2025

1. Prove that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable almost everywhere with respect to the Lebesgue measure, then f' is Lebesgue-measurable.

Solution. The derivative f' is defined almost everywhere as the pointwise limit of measurable functions:

$$f'(x) = \lim_{h \rightarrow 0} \frac{f(x+h) - f(x)}{h} = \lim_{n \rightarrow \infty} n(f(x + \frac{1}{n}) - f(x)).$$

2. Compute

$$\lim_{n \rightarrow \infty} \int_0^1 \frac{n}{1 + n^2 x^2 + n^6 x^8} dx.$$

Solution. The trick is to apply the change of variables $y = nx$, which yields

$$\lim_{n \rightarrow \infty} \int_0^1 \frac{1}{1 + y^2 + n^{-2} y^8} dy.$$

With $1/(1+y^2)$ as the dominating function, the dominated convergence theorem yields the answer

$$\int_0^1 \lim_{n \rightarrow \infty} \frac{1}{1 + y^2 + n^{-2} y^8} dy = \int_0^1 \frac{1}{1 + y^2} dy = \arctan(1) - \arctan(0) = \frac{\pi}{4}.$$

3. Let (X, \mathcal{M}, μ) be a finite measure space. Suppose that $\{f_n\}_{n \geq 1} \subseteq L^1(\mu)$ is uniformly integrable: for every $\varepsilon > 0$, there exists $\delta > 0$ such that

$$\forall E \in \mathcal{M} \quad \left(\mu(E) < \delta \implies \sup_n \int_E |f_n| d\mu < \varepsilon \right).$$

Prove that if f_n converges almost everywhere to f , then f_n converges in L^1 to f .

Solution. Let $\varepsilon > 0$. The uniform integrability of $\{f_n\}_{n \geq 1}$ yields $\delta > 0$ such that

$$\forall E \in \mathcal{M} \quad \left(\mu(E) < \delta \implies \sup_n \int_E |f_n| d\mu < \frac{\varepsilon}{3} \right).$$

Moreover, by Fatou's lemma,

$$\forall E \in \mathcal{M} \quad \left(\mu(E) < \delta \implies \int_E |f| d\mu \leq \liminf_{n \rightarrow \infty} \int_E |f_n| d\mu \leq \sup_n \int_E |f_n| d\mu < \frac{\varepsilon}{3} \right).$$

Egorov's theorem yields $E \in \mathcal{M}$ such that $\mu(E) < \delta$ and f_n converges uniformly to f on $X \setminus E$. Then, uniform convergence yields N such that for all $n \geq N$,

$$\int_{X \setminus E} |f_n - f| d\mu < \frac{\varepsilon}{3}.$$

Putting all three pieces together yields convergence in L^1 :

$$\begin{aligned} \lim_{n \rightarrow \infty} \int_X |f_n - f| d\mu &\leq \lim_{n \rightarrow \infty} \int_E |f_n| + |f| d\mu + \lim_{n \rightarrow \infty} \int_{X \setminus E} |f_n - f| d\mu \\ &\leq \sup_n \int_E |f_n| d\mu + \int_E |f| d\mu + \lim_{n \rightarrow \infty} \int_{X \setminus E} |f_n - f| d\mu \\ &< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon. \end{aligned}$$

Remark. See the Vitali convergence theorem.

4. Let A be a compact subset of \mathbb{R}^n , and let $A_k = \{x \in \mathbb{R}^n : d(x, A) \leq \frac{1}{k}\}$, where $d(x, A) = \inf_{y \in A} d(x, y)$. Prove that

$$\lim_{k \rightarrow \infty} m(A_k) = m(A).$$

Solution. Compact subsets of \mathbb{R}^n are closed and bounded. Since A is bounded, so is A_1 , and thus $m(A_1) < \infty$. Continuity from above implies that

$$\lim_{k \rightarrow \infty} m(A_k) = m\left(\bigcap_{k=1}^{\infty} A_k\right) = m(\{x \in \mathbb{R}^n : d(x, A) = 0\}) = m(\text{cl}(A)) = m(A).$$

Give an example of a measurable subset $A \subseteq \mathbb{R}^n$ for which

$$\lim_{k \rightarrow \infty} m(A_k) \neq m(A).$$

Solution. Let $A = \mathbb{Q}^n$. Then, $m(A_k) = m(\mathbb{R}^n) = \infty$ for all k , but $m(A) = 0$.