

Qualifying Exam: Real Analysis

Unofficial solutions by Alex Fu

Spring 2024

1. Let $(f_n)_{n \geq 1}$ be a sequence of C^1 functions from $\mathbb{R}^{\geq 0}$ to \mathbb{R} such that $f_n(0) = 0$ for every n and

$$\lim_{n \rightarrow \infty} \int_0^\infty |f'_n(x)|^2 dx = 0.$$

Find a proof or counterexample to the following statement:

$$\lim_{n \rightarrow \infty} \sup_{x \geq 0} |f_n(x)| = 0.$$

Solution. We provide the following counterexample. For any $f_n \in C^1$ with nonnegative derivative,

$$\sup_{x \geq 0} |f_n(x)| = \sup_{x \geq 0} f_n(x) = \sup_{x \geq 0} \int_0^x f'_n(t) dt = \int_0^\infty f'_n(t) dt.$$

Thus, we seek a sequence of nonnegative continuous functions $(g_n)_{n \geq 1} = (f'_n)_{n \geq 1}$ that converges to 0 in L^2 but not in L^1 . The function $1/x$ belongs to $L^2([1, \infty)) \setminus L^1([1, \infty))$ and hence inspires $g_n(x) = 1/(x+n)$:

$$\begin{aligned} \int_0^\infty g_n(x)^2 dx &= \frac{1}{n} \rightarrow 0, \\ \int_0^\infty g_n(x) dx &= \infty \quad \text{for all } n. \end{aligned}$$

Then, our counterexample is

$$f_n(x) = \ln(x+n) - \ln n.$$

2. Let (X, \mathcal{A}, μ) be a complete measure space, let f be a nonnegative integrable function on X , and put $b(t) = \mu(\{x \in X : f(x) \geq t\})$. Show that

$$\int_X f d\mu = \int_0^\infty b(t) dt.$$

Solution. Let $E = \{x \in X : f(x) > 0\}$. Since $E = \bigcup_{n=1}^\infty \{x \in X : f(x) > \frac{1}{n}\}$ is σ -finite, Tonelli's theorem implies that

$$\int_E f(x) d\mu = \int_E \int_0^\infty \mathbb{1}\{f(x) \geq t\} dt d\mu = \int_0^\infty \int_E \mathbb{1}\{f(x) \geq t\} d\mu dt = \int_0^\infty \mu(\{x \in E : f(x) \geq t\}) dt.$$

To conclude, note that $\int_X f d\mu = \int_E f d\mu$ and $b(t) = \mu(\{x \in E : f(x) \geq t\})$ for all $t > 0$.

3. Let X be a compact metric space, and let μ be a finite Borel measure on X such that $\mu(\{x\}) = 0$ for every $x \in X$. Prove that for every $\varepsilon > 0$, there exists $\delta > 0$ such that $\mu(E) < \varepsilon$ whenever E is a Borel subset of X with diameter less than δ .

Solution. The inclusion of each set with diameter less than d in an open ball of radius $d/2$ allows reduction to the case of open balls. For each $x \in X$, continuity from above implies that

$$\lim_{r \rightarrow 0} \mu(\text{Ball}(x, r)) = \mu\left(\bigcap_{k=1}^{\infty} \text{Ball}\left(x, \frac{1}{k}\right)\right) = \mu(\{x\}) = 0,$$

which yields $r_x > 0$ such that $\mu(\text{Ball}(x, 2r_x)) < \varepsilon$. Compactness yields a finite subcover $\{\text{Ball}(x_i, 2r_{x_i})\}_{i=1}^n$ for X . Then, every open ball with radius less than $\delta = \min\{r_{x_1}, \dots, r_{x_n}\} > 0$ satisfies, for some $i \in \{1, \dots, n\}$,

$$\text{Ball}(x, r) \subseteq \text{Ball}(x, \delta) \subseteq \text{Ball}(x_i, 2r_{x_i}).$$

Therefore, $\mu(B) < \varepsilon$ whenever B is an open ball with diameter less than 2δ .

4. Let $f \in L^1([0, \infty))$. Prove that the following function is differentiable at every $x > 0$:

$$g(x) = \int_0^{\infty} \frac{f(y)}{x+y} dy.$$

Solution. We directly verify differentiability. For all $x > 0$ and $0 < |h| < x/2$,

$$\begin{aligned} \left| \frac{g(x+h) - g(x)}{h} - \left(- \int_0^{\infty} \frac{f(y)}{(x+y)^2} dy \right) \right| &= \left| \int_0^{\infty} f(y) \left(\frac{1}{h(x+y+h)} - \frac{1}{h(x+y)} + \frac{1}{(x+y)^2} \right) dy \right| \\ &= |h| \cdot \left| \int_0^{\infty} \frac{f(y)}{(x+y)^2(x+y+h)} dy \right| \\ &\leq |h| \cdot \frac{2}{x^3} \int_0^{\infty} |f(y)| dy, \end{aligned}$$

which converges to 0 as $h \rightarrow 0$. The three integrals exist (and the linearity of integration applies) because the integrands are dominated by $|f(y)|/(hx)$, $|f(y)|/(hx)$, and $|f(y)|/x^2$, which are integrable with respect to y .

Find an example of $f \in L^1([0, \infty))$ such that g is not differentiable at $x = 0$.

Solution. Let $f(y) = 1/(y+1)^2$. The monotone convergence theorem implies that

$$\lim_{n \rightarrow \infty} \frac{g(\frac{1}{n}) - g(0)}{\frac{1}{n}} = \lim_{n \rightarrow \infty} - \int_0^{\infty} \frac{f(y)}{y(y+\frac{1}{n})} dy = - \int_0^{\infty} \frac{f(y)}{y^2} dy = - \int_0^{\infty} \frac{2}{y} - \frac{1}{y^2} - \frac{2}{y+1} - \frac{1}{(y+1)^2} dy = -\infty,$$

which shows that g is not differentiable at 0.