

Qualifying Exam: Real Analysis

Unofficial solutions by Alex Fu

Spring 2023

1. Let $f: [0, 1] \rightarrow \mathbb{R}$ be a Lebesgue-measurable function that is positive almost everywhere. Prove that if E_1, E_2, \dots are Lebesgue-measurable subsets of $[0, 1]$ such that

$$\lim_{k \rightarrow \infty} \int_{E_k} f(x) \, dx = 0,$$

then $\lim_{k \rightarrow \infty} m(E_k) = 0$.

Solution. Let $A_n = \{x: \frac{1}{n-1} > f(x) \geq \frac{1}{n}\}$, with $A_1 = \{x: f(x) \geq 1\}$. By Tonelli's theorem,

$$0 = \lim_{k \rightarrow \infty} \int f \cdot \mathbb{1}_{E_k} \, dm \geq \lim_{k \rightarrow \infty} \int \sum_{n=1}^{\infty} \frac{1}{n} \mathbb{1}_{A_n} \cdot \mathbb{1}_{E_k} \, dm = \sum_{n=1}^{\infty} \frac{1}{n} \lim_{k \rightarrow \infty} \int \mathbb{1}_{A_n} \cdot \mathbb{1}_{E_k} \, dm \geq 0.$$

A sum of nonnegative numbers is zero only if each of its terms is zero, so $\lim_{k \rightarrow \infty} m(A_n \cap E_k) = 0$ for all n . The equality $m(\bigcup_{n=1}^{\infty} A_n) = m(\{x: f(x) > 0\}) = 1$ and the dominated convergence theorem then imply that

$$\lim_{k \rightarrow \infty} m(E_k) = \lim_{k \rightarrow \infty} \sum_{n=1}^{\infty} m(A_n \cap E_k) = \sum_{n=1}^{\infty} \lim_{k \rightarrow \infty} m(A_n \cap E_k) = 0.$$

Remark. This is Problem 4 on the Fall 2021 exam.

2. Let $(g_n)_{n \geq 1}$ be a sequence of measurable functions on $[0, 1]$ with the following properties:

- i. There exists $C < \infty$ such that $|g_n(x)| \leq C$ for every n and almost every $x \in [0, 1]$;
- ii. For every $a \in [0, 1]$, we have that $\lim_{n \rightarrow \infty} \int_0^a g_n(x) dx = 0$.

Prove that for every $f \in L^1([0, 1])$,

$$(*) \quad \lim_{n \rightarrow \infty} \int_0^1 f(x) g_n(x) dx = 0.$$

Solution. Let \mathcal{F} be the collection of functions in $L^1([0, 1])$ that satisfy $(*)$, and let $\mathcal{A} = \{A : \mathbb{1}_A \in \mathcal{F}\}$. Property (ii) implies that $[0, a] \in \mathcal{A}$ for every $a \in [0, 1]$. By the linearity of integration, \mathcal{A} is an algebra; by the bounded convergence theorem, \mathcal{A} is closed under monotone limits; by the monotone class lemma, \mathcal{A} is a σ -algebra. Hence, \mathcal{A} is the Borel σ -algebra, which means that \mathcal{F} contains all measurable indicator functions on $[0, 1]$. By the linearity of integration, \mathcal{F} is closed under linear combinations. Because every $f \in L^1$ is the limit in L^1 of a sequence of simple functions $(\varphi_m)_m \subseteq \mathcal{F}$,

$$\begin{aligned} \left| \lim_{n \rightarrow \infty} \int_0^1 f(x) g_n(x) dx \right| &= \lim_{m \rightarrow \infty} \left| \lim_{n \rightarrow \infty} \int_0^1 \varphi_m(x) g_n(x) dx - \lim_{n \rightarrow \infty} \int_0^1 f(x) g_n(x) dx \right| \\ &\leq \lim_{m \rightarrow \infty} \lim_{n \rightarrow \infty} \int_0^1 |\varphi_m(x) - f(x)| \cdot |g_n(x)| dx \\ &\leq \lim_{m \rightarrow \infty} C \int_0^1 |\varphi_m(x) - f(x)| dx \\ &= 0. \end{aligned}$$

Hence, $\mathcal{F} = L^1([0, 1])$, as desired.

3. Let E be a measurable subset of $[0, 1]$ with Lebesgue measure $m(E) = \frac{99}{100}$. Show that there exists $x \in [0, 1]$ such that for every $r \in (0, 1)$,

$$m(E \cap (x - r, x + r)) \geq \frac{r}{4}.$$

Hint: Use the Hardy–Littlewood inequality

$$m(\{x \in \mathbb{R} : Mf(x) \geq \alpha\}) \leq \frac{3}{\alpha} \|f\|_{L^1}.$$

Solution. What we want to show is the existence of $x \in [0, 1]$ such that

$$\inf_{r>0} \frac{m(E \cap (x - r, x + r))}{2r} \geq \frac{1}{8}.$$

Let $f = \mathbb{1}_{[0,1] \setminus E}$. Equivalently, what we want to show is the existence of $x \in [0, 1]$ such that

$$Mf(x) = \sup_{r>0} \frac{m((x - r, x + r) \setminus E)}{2r} \leq \frac{7}{8}.$$

By the Hardy–Littlewood inequality,

$$m(\{x \in [0, 1] : Mf(x) \geq \frac{7}{8}\}) \leq \frac{3}{(\frac{7}{8})} m([0, 1] \setminus E) = \frac{24}{700} < 1.$$

Then, the set $\{x \in [0, 1] : Mf(x) < \frac{7}{8}\}$ has positive Lebesgue measure and, in particular, is nonempty.

4. Let $f: [0, 1] \rightarrow [0, 1]$ be Lebesgue-measurable. Prove that for every $M > 0$, there exists $a \in [0, 1]$ such that

$$\int_0^1 \frac{1}{|f(x) - a|} dx \geq M.$$

Solution. By Tonelli's theorem, and because the codomain of f is $[0, 1]$,

$$\int_0^1 \int_0^1 \frac{1}{|f(x) - a|} dx da = \int_0^1 \int_0^1 \frac{1}{|f(x) - a|} da dx = \infty.$$

Let $M > 0$. If $\int_0^1 1/|f(x) - a| dx < M$ for every $a \in [0, 1]$, then the integral above would be at most M , which is a contradiction; hence, there exists some $a \in [0, 1]$ for which $\int_0^1 1/|f(x) - a| dx \geq M$.

Remark. This problem is similar in spirit to Problem 3 on the Spring 2021 exam.