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1. Prove that for almost every x ∈ [0,1], there exist at most finitely many rational numbers m/n such that∣∣∣x − m

n

∣∣∣< 1

(n logn)2 .

Hint: Consider intervals of length 2/(n logn)2 centered at rational points m/n.

Solution. Following the hint, define

En = ⋃
m:gcd(m,n)=1

(
m

n
− 1

(n logn)2 ,
m

n
+ 1

(n logn)2

)
.

Because En is a disjoint union of at most n intervals of length 2/(n logn)2,

∑
n≥2

m(En) ≤ ∑
n≥2

2

n(logn)2 <∞.

Then, the Borel–Cantelli lemma implies that

m({x ∈ [0,1] : there exist at most finitely many n such that x ∈ En}) = m

(
[0,1] \ limsup

n→∞
En

)
= 1.

2. Let S be a closed subset of R, and let f ∈ L1([0,1]). Suppose that for every measurable subset E of [0,1] with
m(E) > 0,

1

m(E)

∫
E

f (x)dx ∈ S.

Prove that f (x) ∈ S for almost every x ∈ [0,1].

Solution. Let U =R\ S, and assume for the sake of contradiction that m( f −1(U )) > 0. The nonempty open set
U is a countable union of open intervals, one of which must satisfy m( f −1((a,b))) > 0. Continuity from below
then yields n such that m( f −1([a + 1

n ,b − 1
n ])) > 0. For the measurable set E = f −1([a + 1

n ,b − 1
n ]),

a + 1

n
≤ 1

m(E)

∫
E

f (x)dx ≤ b − 1

n
,

which contradicts the disjointness of [a + 1
n ,b − 1

n ] and S.
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3. Compute

lim
n→∞

∫ 1

0

1+nx

(1+x)n dx.

Solution. For all x > 0 and for every n ≥ 2,

1+nx

(1+x)n ≤ 1+nx(n
2

)
x2

= 2

x2 · 1

n(n −1)
+ 2

x
· 1

n −1
.

The binomial theorem implies that (1+nx)/(1+x)n ≤ 1, so the bounded convergence theorem implies that

lim
n→∞

∫ 1

0

1+nx

(1+x)n dx =
∫ 1

0
lim

n→∞
1+nx

(1+x)n dx =
∫ 1

0
0dx = 0.

4. Let (X ,A ,µ) be a finite measure space, and let ( fn)n≥1 be a sequence of nonnegative measurable functions
on X . Prove that fn → 0 in measure if and only if

lim
n→∞

∫
X

fn(2+ fn)

(1+ fn)2 dµ= 0.

Solution. Let ϕ(y) = y(2+y)
(1+y)2 = 1− 1

(1+y)2 . The key observation is that for all y ≥ 0,

3min{1, y} ≥ϕ(y) ≥ 1
2 min{1, y},

a consequence of which is the logical equivalence of
∫
ϕ( fn)dµ→ 0 and

∫
min{1, fn}dµ→ 0.

Let gn = min{1, fn}. If fn → 0 in measure, then gn → 0 in measure because µ({x : fn(x) ≥ ε}) ≥µ({x : gn(x) ≥ ε}),
and the bounded convergence theorem implies that

∫
gn dµ→ 0. If

∫
gn dµ→ 0, then gn → 0 in measure, and

fn → 0 in measure because µ({x : gn(x) ≥ ε}) =µ({x : fn(x) ≥ ε}) for 0 < ε≤ 1.
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