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Problem 1. Let —oo < a < b < oo and suppose B is a countable collection of
closed subintervals of (a,b). Give the proof that there is a countable pairwise-disjoint
subcollection B’ C B such that
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where I denotes the 5-times enlargement of I; thus if I = [z — p,z + p| then I=
[z — 5p,z + 5p].
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Problem 2. Assume that f is absolutely continuous on [0, 1], and assume that f' =g
a.e., where g is a continuous function. Prove that f is continuously differentiable on [0, 1].
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Problem 3. Let (X, M, p) be a measure space such that p(X) = 1. Let Ay, Ay, ..., A5 €
M. Assume that almost every point in X belongs to at least 10 of these sets. Prove that
at least one of the sets has measure greater than or equal to 1/5.
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Problem 4. Let f:[0,00) — R be absolutely continuous on every closed subinterval of

[0,00) and

f(z) = £(0) - / “g(t)dt,  forz >0,
where g € £1([0,00)). Show that - 7
x f(2z) — f(z) j/ﬁn ’
%(h = (log 2) /] g(t)dt.
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