

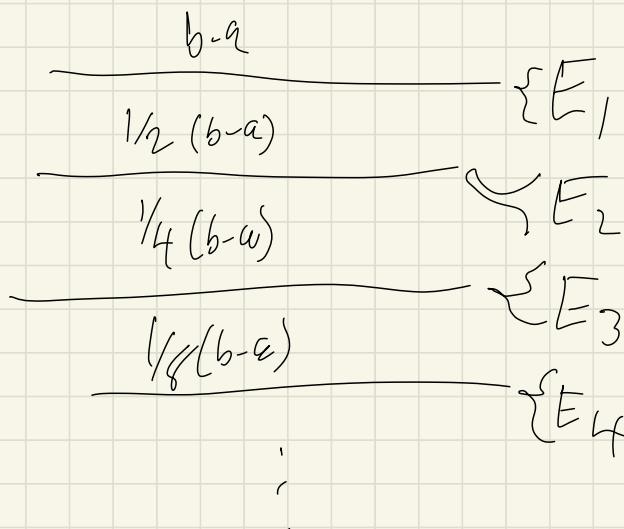
18 sp. 1

Problem 1. Let $-\infty < a < b < \infty$ and suppose \mathcal{B} is a countable collection of closed subintervals of (a, b) . Give the proof that there is a countable pairwise-disjoint subcollection $\mathcal{B}' \subset \mathcal{B}$ such that

$$\bigcup_{I \in \mathcal{B}} I \subset \bigcup_{I \in \mathcal{B}'} \tilde{I},$$

where \tilde{I} denotes the 5-times enlargement of I ; thus if $I = [x - \rho, x + \rho]$ then $\tilde{I} = [x - 5\rho, x + 5\rho]$.

Let $E_n := \{I$



Problem 2. Assume that f is absolutely continuous on $[0, 1]$, and assume that $f' = g$ a.e., where g is a continuous function. Prove that f is continuously differentiable on $[0, 1]$.

Let $\varepsilon > 0$, $x \in [0, 1]$. g continuous $\Rightarrow \exists \delta > 0$ s.t.
 $\forall y \in (x-\delta, x+\delta) \cap [0, 1]$, $|g(y) - g(x)| < \varepsilon$.

f absolutely continuous and $g = f'$ a.e. \Rightarrow on any closed interval $[a, b] \subset [0, 1]$, we have $\int_a^b g dm = f(b) - f(a)$.

We have $f'(x) = \lim_{h \rightarrow 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \rightarrow 0} \frac{1}{h} \int_x^{x+h} g dm$

Thus as the sequence $h_n \rightarrow 0$, $\exists N \in \mathbb{N}$ s.t.
 $\forall n \geq N$, $|h_n| < \delta \Rightarrow |g(x+h_n) - g(x)| < \varepsilon \quad \forall n \geq N$.
 $\Rightarrow (g(x) - \varepsilon) h_n = \int_x^{x+h_n} g(x) - \varepsilon dm \leq \int_x^{x+h_n} g dm \leq \int_x^{x+h_n} g(x) + \varepsilon dm = (g(x) + \varepsilon) h_n$

$$\Rightarrow g(x) - \varepsilon \leq f'(x) \leq g(x) + \varepsilon$$

$$\Rightarrow f'(x) = g(x)$$

$$\Rightarrow f' = g \quad \forall x \Rightarrow f' \text{ continuous} \Rightarrow f \text{ cont. diff.}$$

Problem 3. Let (X, \mathcal{M}, μ) be a measure space such that $\mu(X) = 1$. Let $A_1, A_2, \dots, A_{50} \in \mathcal{M}$. Assume that almost every point in X belongs to at least 10 of these sets. Prove that at least one of the sets has measure greater than or equal to $1/5$.

Consider $\int_X \sum_{i=1}^{50} \chi_{A_i} d\mu = \sum_{i=1}^{50} \mu(A_i)$ since $\sum_{i=1}^{50} \chi_{A_i} \in L^+$

$\sum_{i=1}^{50} \chi_{A_i}(x) \geq 10$ a.e. $\Rightarrow \int_X \sum_{i=1}^{50} \chi_{A_i} d\mu \geq \int_X 10 d\mu = 10$.

Thus, $\sum_{i=1}^{50} \mu(A_i) \geq 10$

If $\mu(A_i) < \frac{1}{5}$ $\forall i$, then $\sum_{i=1}^{50} \mu(A_i) < \sum_{i=1}^{50} \frac{1}{5} = 10 \Rightarrow \leftarrow$

Hence $\mu(A_i) \geq \frac{1}{5}$ for some i .

Problem 4. Let $f : [0, \infty) \rightarrow \mathbb{R}$ be absolutely continuous on every closed subinterval of $[0, \infty)$ and

$$f(x) = f(0) - \int_0^x g(t) dt, \quad \text{for } x \geq 0,$$

where $g \in \mathcal{L}^1([0, \infty))$. Show that

$$\int_0^\infty \frac{f(2x) - f(x)}{x} dx = (\log 2) \int_0^\infty g(t) dt.$$

5g_n?

$$\begin{aligned} \int_0^\infty \frac{f(2x) - f(x)}{x} dx &= \int_0^\infty \frac{f(0) - \int_0^{2x} g(t) dt - f(0) + \int_0^x g(t) dt}{x} dx \\ &= \int_0^\infty -\frac{\int_x^{2x} g(t) dt}{x} dx \\ &= \int_0^\infty \int_0^\infty -\frac{1}{x} g(t) \chi_{[x, 2x]}(t) dt dx \\ &= \int_0^\infty \int_0^\infty -\frac{1}{x} g(t) \chi_{[t/2, t]}(x) dt dx \\ &= \int_0^\infty -g(t) \int_0^\infty \frac{1}{x} \chi_{[t/2, t]}(x) dx dt \quad * \\ &= \int_0^\infty -g(t) [\ln(t) - \ln(t/2)] dt \\ &= \ln(2) \int_0^\infty g(t) dt. \end{aligned}$$

$$\begin{aligned} * \text{ Tonelli} \Rightarrow & \int \left| -\frac{1}{x} g(t) \chi_{[t/2, t]}(x) \right| (dm(t) \times dm(x)) \\ &= \int_0^\infty \int_0^\infty \left| -\frac{1}{x} g(t) \chi_{[t/2, t]}(x) \right| dx dt \\ &= \int_0^\infty \left| -g(t) \right| \int_0^\infty \frac{1}{x} \chi_{[t/2, t]}(x) dx dt \\ &= \ln(2) \int_0^\infty |g(t)| < \infty \end{aligned}$$

$$\Rightarrow -\frac{1}{x} g(t) \chi_{[t/2, t]}(x) \in L^1(m(t) \times m(x))$$

\Rightarrow Fubini may be used.