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Problem 1. Assume that f is a positive absolutely continuous function on [0, 1]. Prove
that 1/f is also absolutely continuous on [0, 1].
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Problem 2. Assume that E is Lebesgue measurable. ?

(a) Suppose m(E) < oo, where m is the Lebesgue measure. Show that
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is continuous. (Here, x4 denotes the characteristic function of a set A C R)
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Problem 3. Assume that f is a continuous function on [0, 1]. Prove that

lim /l nz" ! f(x)dx = f(1).
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Problem 4. Let (2,3, u) be a o-finite measure space. Let f, g be measurable real
valued functions. Show that
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