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1. Consider the sequence
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2. Suppose that f: [0,00) = R is Lebesgue integrable.
(i) Show that there exists a sequence z,, — oo such that f(z,) — 0.
(ii) Is it true that f(z) must converge to 0 as z — oo? Give a proof or a counterexample.
(iii) Suppose additionally that f is differentiable and f’(z) — 0 as * — oo. Is it true that f(z) must
P

onverge to 0 as x — oo? Give a proof or a counterexample.
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3. Define f,(z) = ae~™** — be~"** where 0 < a < b.

(i) Show that
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(ii) What can you deduce about the value of

/‘ Z | fn(z)| dz?

n=1

and

(f) i,\o;l 5;05{,€~W*‘?93’M% ia{, = Z,‘f{ "Le_/’u*‘:,”f’/“xj:’

= SZ 0+0+5e" -%ef
= 5= 0 = O
—qx
anjlctevn&:: D\Z/\iol (,\eir;’?)” = & (#«}/([—5&?‘) = 3%7_27 }
R AP N AV SW ae be ™t J = [-e
b }_e—ax l«@d,’% > Jie Qe X J/’f

B N s iy b
e B () - (-]
= pome AL (D)+ KO- -4 ({,é-a//q

N\

Y
= | ok | Ao (%'—"_:’— = Y ) Say
1 m i = @',’{k _ Y]
koo ek = €
[l = m ~bae e ™™ 9

Uroo —ofer 75/ = €

[im b (a-b)/k Y
= — =

koo & e &

&

= Yal= e =5 yF XA[/’{)

(i) (252 160 Ix = eo [ ke if nof
then 209 6 L' Quxm) where v i e wupg moagore
= by Fubini T2 ST A dx = 727 L0 b | o amdredictn.

juj



IS cp. b

4. Assume that f is integrable on [0,1] with respect to the Lebesgue measure m, and let F(z) =
[“' f(t)dt. Assume that ¢: R — R is Lipschitz, i.e., there exists a constant C' > 0 such that

[p(z1) — P(x2)| < Clzy — 22|, 1,29 € R.

Prove that there exists a function g which is integrable on [0,1] such that ¢(F(z)) = f(; g(t)dt for
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