5. 1

1. Suppose that (X, B, ) is a measure space with pu(X) < oo, and that {f,},>1 and f are
measurable functions on X such that f,, — f almost everywhere.

(i) Suppose that [ f2du < oo. Show that f is integrable.

(ii) Suppose that there exists C' < oo such that [ f2du < C for all n > 1. Show that
fo— fin LY.

(iii) Give an example where [ |f,|du <1 for all n > 1 but f, /4 fin L.
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2. For what non-negative integer n and positive real ¢ does the integral

/ In <1 - (sinz) ) dr
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(a) exist as a (finite) Lebesgue integral? 17/ s 0N C.

(b) converge as an improper Riemann integral?
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3. Suppose f is Lebesgue integrable on R. Show that

%in(ll/’L |f(x+1t)— f(x)|dx = 0.
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4.4

1. Let (X, A, pu) and (Y, B,r) be measure spaces such that p(X) > 0 and »(Y) > 0. Let
f:X = Rand g:Y — R be measurable functions (with respect to A and B respectively)
such that

f(z) =gly) p x v -almost everywhere on X x Y
Show that there exists a constant A such that f(z) = A for p-a.e. x and g(y) = A for v-a.e.
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