

1. Suppose that (X, \mathcal{B}, μ) is a measure space with $\mu(X) < \infty$, and that $\{f_n\}_{n \geq 1}$ and f are measurable functions on X such that $f_n \rightarrow f$ almost everywhere.

(i) Suppose that $\int f^2 d\mu < \infty$. Show that f is integrable.

(ii) Suppose that there exists $C < \infty$ such that $\int f_n^2 d\mu \leq C$ for all $n \geq 1$. Show that $f_n \rightarrow f$ in L^1 .

(iii) Give an example where $\int |f_n| d\mu \leq 1$ for all $n \geq 1$ but $f_n \not\rightarrow f$ in L^1 .

$$(i) \quad \int f^2 d\mu = \int_{\{x: |f(x)| \leq 1\}} f^2 d\mu + \int_{\{x: |f(x)| > 1\}} f^2 d\mu \Rightarrow \int_{\{x: |f(x)| > 1\}} f^2 d\mu < \infty$$

$$\Rightarrow \int |f| d\mu = \int_{\{x: |f(x)| \leq 1\}} |f| d\mu + \int_{\{x: |f(x)| > 1\}} |f| d\mu \leq \mu(X) + \int_{\{x: |f(x)| > 1\}} f^2 d\mu < \infty. \quad \square$$

(ii) NTS $\int |f_n - f| d\mu \rightarrow 0$ as $n \rightarrow \infty$.

?

why $|f_n(x) - f(x)| \leq 2 |f(x)|$ a.e.

$$\mu \int_{\{x: f > M\}} f_n$$

$$\mu f_n \chi_{\{x: f_n > M\}} \leq f_n^2 \quad \text{X}$$

(iii) Let $f_n = n \chi_{[0, 1/n]}$, $f_n \rightarrow 0$ a.e. But $\int |f_n - 0| d\mu = 1 \quad \forall n$.
 $\therefore f_n \not\rightarrow 0$ in L^1 .

2. For what non-negative integer n and positive real c does the integral

$$\int_1^\infty \ln \left(1 + \frac{(\sin x)^n}{x^c} \right) dx$$

(a) exist as a (finite) Lebesgue integral? *only depends on C.*
 (b) converge as an improper Riemann integral?

(a)

Is Kayla

$$\ln(1+y) \approx y \quad \text{at } y=0 \quad \rightarrow \int \frac{(\sin x)^n}{x^c} dx$$

$$\ln(1+y) \leq cy$$

$$\begin{cases} C > 1, \text{ integrable} \\ C \leq 1, \text{ not.} \\ \{x: \sin x \geq \frac{1}{2}\} \end{cases}$$

bound $\frac{(\sin x)^n}{x^c}$ below by $\frac{1}{x^c}$
 pieces of intervals of length 2π .

3. Suppose f is Lebesgue integrable on \mathbb{R} . Show that

$$\lim_{t \rightarrow 0} \int_{-\infty}^{\infty} |f(x+t) - f(x)| dx = 0.$$

First consider a continuous function g that vanishes outside $[-M, M]$.

D₀,

4. Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be measure spaces such that $\mu(X) > 0$ and $\nu(Y) > 0$. Let $f : X \rightarrow \mathbb{R}$ and $g : Y \rightarrow \mathbb{R}$ be measurable functions (with respect to \mathcal{A} and \mathcal{B} respectively) such that

$$f(x) = g(y) \quad \mu \times \nu \text{-almost everywhere on } X \times Y$$

Show that there exists a constant λ such that $f(x) = \lambda$ for μ -a.e. x and $g(y) = \lambda$ for ν -a.e. y .

Assume $\exists \lambda \in \mathbb{R}$ s.t. $\mu(f^{-1}(\lambda)) > 0$.

$$f(x) = g(y) \quad \mu \times \nu \text{-a.e.}$$

$$\Rightarrow \mu \times \nu(f^{-1}(\lambda) \times g^{-1}(\mathbb{R} \setminus \{\lambda\})) = \mu(f^{-1}(\lambda)) \cdot \nu(g^{-1}(\mathbb{R} \setminus \{\lambda\})) = 0$$

$$\Rightarrow \nu(g^{-1}(\mathbb{R} \setminus \{\lambda\})) = 0 \Rightarrow g(y) = \lambda \quad \nu\text{-a.e.}$$

$$\Rightarrow \nu(g^{-1}(\lambda)) = \nu(Y) > 0$$

$$\Rightarrow \text{by the same logic, } f(x) = \lambda \quad \mu\text{-a.e.}$$

We get the same result if our starting assumption is that $\exists \lambda \in \mathbb{R}$ s.t. $\nu(g^{-1}(\lambda)) > 0$.

So, what happens if $\nexists \lambda$ s.t. $\mu(f^{-1}(\lambda)) > 0$

or $\nu(g^{-1}(\lambda)) > 0$? That is, $\forall \lambda \in \mathbb{R}$, $\mu(f^{-1}(\lambda)) = 0$

and $\nu(g^{-1}(\lambda)) = 0$.

Let $E \subset \mathbb{R}$ be a measurable subset.

$$\mu \times \nu(f^{-1}(E) \times g^{-1}(E^c)) = 0, \quad \text{if } E \subset \mathbb{R},$$

$$\mu(f^{-1}(E)) > 0 \text{ for some } E \subset \mathbb{R} \Rightarrow \nu(g^{-1}(E^c)) = 0$$

$$\Rightarrow \nu(g^{-1}(E)) = \nu(Y) \Rightarrow \mu(f^{-1}(E^c)) = 0$$

$$\Rightarrow \mu(f^{-1}(E)) = \mu(E).$$

$$\mu(f^{-1}(\mathbb{R})) > 0 \Rightarrow \mu(f^{-1}(\mathbb{R})) = \mu(X).$$

?

$$\mu(f^{-1}(\mathbb{R})) = \mu(f^{-1}((-\infty, 0))) + \mu(f^{-1}([0, \infty))) = \mu(X)$$

$$\Rightarrow \text{one of } \overbrace{\mathbb{R}}^{\text{?}} = \mu(X).$$