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1. Suppose that {f,} is a sequence of of real valued continuously differentiable functions
on [0,1] such that

1

lim \fa(z)|dx =0 and lim | |f:(x)|dz = 0.
i (1 n=00 Jo
Show that {f,} converges to 0 uniformly on [0, 1].
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3. Let (X, M, ) be a measure space, f,,f € L'(u). Show that ]\ |fn— fldu — 0 as
n — oo if and only if
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4. Let p and v be o-finite positive measures, ;1 > v and assume that v << p— v (v is
absolutely continuous with respect to g — v).

Prove that
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